
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

Algorithm and Architecture Design of Multi-rate
Frame Rate Up-conversion in QHD LCD System

Yung-Lin Huang, Student Member, IEEE, Fu-Chen Chen, and Shao-Yi Chien, Member, IEEE

Abstract—In current LCD systems, the frame size becomes
larger even to Quad-HD (3840x2160) resolution, and the refresh
rate becomes higher to 120Hz or more. However, available videos
are usually at only 24FPS, 30FPS or 60FPS, which is much lower
than the refresh rate of LCD. To fill the gap between videos
and LCD systems, frame interpolation techniques are usually
adopted. Although frame rate up-conversion is regarded as the
most efficient method, many new design challenges are introduced
in current high-resolution and high-frame-rate LCD systems. In
this paper, we proposed a hardware-efficient multi-rate frame
rate up-conversion technique to enhance the visual quality when
converting Qual-HD video from 24FPS or 60FPS to 120FPS.
Also, a hardware architecture for our proposed multi-rate frame
rate up-conversion technique is proposed to support the current
Qual-HD LCD systems. The experimental results show that our
proposed techniques produce high visual quality video and have
high hardware utilization.

Index Terms—Frame rate up-conversion, motion blur reduc-
tion, motion estimation, motion compensation, Markov Random
Field

I. INTRODUCTION

NOWADAYS, liquid crystal display (LCD), which is one
of the important display techniques, is used widely for

many applications. Also, the refresh rate of LCD systems is
getting higher in order to enhance the visual quality. However,
the video frame rate is still not as high as the growing LCD
refresh rate.

Frame rate up-conversion (FRUC) is a technique that inter-
polates intermediate frames to increase video frame rate. For
recent years, FRUC is applied on LCD systems for converting
frame rate of input video stream to 120 frames per second
(FPS) or higher in order to reduce the hold-type motion blur
on LCD [1].

While the frame size of video systems becomes larger to
Full-HD (1920x1080) or Quad-HD (3840x2160) resolution,
many new design challenges are introduced. For example,
huge computation, large bandwidth and large on-chip SRAM
size requirements. Our goal is to develop a FRUC algorithm
and architecture which fits with the current LCD system. In
this paper, a multi-rate FRUC in Quad-HD LCD System is
proposed. The capability of our design has 24FPS to 120FPS
and 60FPS to 120FPS multi-rate up-conversion, and supports
Quad-HD resolution for next LCD generation.

The rest of paper is organized as follows. First, the relation
between motion blur on LCD and FRUC is shown in Sec. II,
and then a general FRUC flow is given. Afterwards, the pro-
posed algorithm and hardware architecture with performance

Thanks...

(a) (b)

Fig. 1. (a) Hold-type display with slow response, (b) Direct evaluation of
blur width.

evaluation are described in Sec. III and Sec. IV, respectively.
Therefore, in Sec. V, the implementation results will be shown.
Finally, a conclusion is given in Sec. VI.

II. MOTION BLUR ON LCD AND FRAME RATE
UP-CONVERSION

A. Motion Blur on LCD

The visual quality of LCD suffers from motion blur due to
the physical property of liquid crystal. In general, there are
two types of motion blur occur on LCD [1].

The first type of motion blur is caused by the slow response
of liquid crystal. As shown in Fig. 1(a), the black solid line
is the targeting brightness and the dotted line is the actually
displayed brightness. The smooth variation of brightness looks
blurred by human eyes. To overcome this problem, a popular
solution called overdrive is applied. That is, the voltage is first
set higher (or lower) than the targeting brightness, and then
set back to the ordinary value after the brightness is close to
the target. The red solid line in Fig. 1(a) shows the resulting
brightness, which reduce the smooth variation of brightness.

The second type is called hold-type motion blur. As shown
in Fig. 1(a), the maintenance of brightness is called the period
of hold which is equal to the inverse of frame rate. In Fig. 1(b),
when human eyes track objects along their movement with
velocity v, they integrate the intensity continuously, but the
real intensity changes discretely. This divergence makes the
integrated signal of the object’s boundary on retina smoothly
decrease (increase). The range of decreasing (increasing) is
called blur width and can be directly expressed as

Blur widthdirect = v/frame rate

Another way for evaluating hold-type motion blur is based
on the sampling and reconstruction theory of integrated signal
on retina [2]. In the case of idle display (without slow
response), the blur width is equal to

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

Fig. 2. A general FRUC flow.

Blur widththeoretical = 0.8× v/frame rate

Therefore, the blur width is inverse-proportional to the
frame rate. Among the solutions of hold-type motion blur,
up-converting the frame rate is regarded as the most efficient
method since it can directly reduce the effect of motion blur
without visual quality drop [1].

B. Frame Rate Up-conversion

For hold-type motion blur reduction on LCD, a FRUC
algorithm and architecture which fits with the current LCD
system is needed. Fig. 2 shows a general FRUC flow.

At first, the true motion vector fields (MVFs) between
existing frames are required. To present more realistic and
detail motion in the frames, the further motion vector (MV)
processing may be operated. After the MVFs are retrieved,
they are needed to be mapped from existing frames to tar-
geting intermediate frames because of temporal mismatch.
Afterwards, intermediate frames are interpolated according to
mapped MVFs using motion compensation techniques such as
overlapped block motion compensation (OBMC) [3]. Finally,
the interpolated frames are post-processed to achieve better
visual quality.

Discussion of related works at each part is listed as follows,
1) Motion Estimation: Unlike conventional motion esti-

mation in video encoder, the purpose here is to find true
motion presenting objects’ movement [4], not just to reduce
the residual energy of each block comparison. Many related
works approximate the true MVFs using block-based motion
estimation with spatial and temporal predictions [4] [5] [6].
However, the true MVF is hard to be estimated and the
computational cost is usually high. On the other hand, it is
possible to get MVF from video decoder [7] [8] [9] and
then perform MV processing to optimize the rough MVFs.
Nevertheless, the decoding information is not always available
for FRUC in current LCD systems.

2) Motion Vector Processing: MV processing such as me-
dian filter [10] is often adopted because of the spatial and
temporal coherence of true motion. Besides, more processing
methods such as motion smoothing via global energy mini-
mization [11] and 3D Markov Random Field modeling [12]
are proposed to approximate the MVF to a true one. How-
ever, most of the algorithms are too expensive for hardware
implementation and some of them are even heuristic.

Fig. 3. Three general MV mapping methods: Tradition, forward and bilateral.

3) Motion Vector Mapping: To our knowledge, there are
three MV mapping methods in general, and the illustration of
the three methods are shown in Fig. 3. The first one is called
traditional MV mapping method, which maps the block MV
of existing frames to the corresponding blocks of intermediate
frames. However, the two blocks exist at the same position but
different time, so the MVs of them are not exactly the same.
The second one is called forward MV mapping [13], which
maps through the direction of MV to the block pointed by it.
There is no temporal mismatch using forward MV mapping,
but in this case some positions may be pointed by many MVs
or no MVs, the problems of overlap and hole are introduced.
The third one is called bilateral MV mapping, which performs
motion estimation on intermediate frames [14] [15]. There
are no problems of overlap and hole mentioned above, but
it usually fails to find the true MVs at flat regions .

4) Motion Compensation: Since the motion compensation
is usually block-based, it is an important issue to avoid
block artifacts. Applying adaptive weighted-interpolation for
occlusion handling is also proposed [16]. Besides, because mo-
tion compensation should be performed for each interpolated
frame, the bandwidth consumption becomes a problem when
the number of interpolated frames increases.

5) Post-Processing: The visual quality of interpolated
frame might suffer due to the incorrect MVs, wrong inter-
polation and so on, so it is a choice to refine the interpolated
frame via post-processing [17] [16]. Nevertheless, it is hard to
determine where the artifacts are and how to interpolate with
better visual quality.

III. PROPOSED MULTI-RATE FRAME RATE
UP-CONVERSION ALGORITHM

At first, a low-complexity true motion estimation algorithm
is proposed. For hardware complexity consideration, the block
size is set as 32x32, the matching criterion is 8x8 multilevel
successive elimination algorithm (MSEA) [18], and the search
range is set as ±128x±128 for Full-HD videos. Further-
more, MV correction based on Markov Random Field (MRF)
modeling is performed with our proposed simplified iterated
conditional mode (ICM) minimization.

After true motion estimation, we propose a block-based
forward MV mapping technique that determines MVFs of
intermediate frames with both the benefits of forward MV
mapping and bilateral MV mapping. Finally, the blocks de-
tected by our proposed artifact detection method are divided
into sub-blocks. For those sub-blocks with artifacts, new MVs
are bilateral searched and re-interpolated with consideration of
occlusion. The experiments show that the proposed algorithm
performs well in both subjective and objective evaluation.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

Fig. 4. A graphic illustration of our proposed predictive square search
algorithm.

Fig. 5. Percentage of blocks’ converge type at the worst cases of each
Full-HD sequence.

A. Predictive Square Search Motion Estimation

This motion estimation algorithm is very similar to a hybrid
search algorithm with four step search (4SS) [19] and three
step search (3SS) [20]. A graphic illustration of our proposed
predictive square search algorithm is demonstrated in Fig. 4.

First, the median of three neighboring (left, up and upper-
right) MVs is calculated as a predictor. Afterwards, a 4-step
square search pattern centering on the predictor is employed.
If the minimum distortion appears at the center or its value is
smaller than the threshold, the predictor will be regarded as
good and proceed to apply 2-step and 1-step square patterns
for converge, like 3SS. Otherwise, we go back to the origin
and search MV like 4SS but with an 8-step square pattern. If
the minimum distortion found at the center of a 8-step square
pattern, 4-step, 2-step and 1-step square patterns are employed
for converge.

The ability to reject predictor and re-estimate from origin
can prevent wrong motion estimation due to wrong predictors.
Besides, the proposed algorithm is cost efficient because of
its early convergence. Fig. 5 shows the percentage of blocks’
converging type at the worst cases of each sequence. For the
most complex sequence “vintagecar”, there are still up to 60%
blocks converging around predictor.

The chosen matching criterion for block-matching is 8x8
MSEA. The 8x8 MSEA, which is usually calculated for fast

Fig. 6. Illustration of 8x8 MSEA.

full search at previous works, can be regarded as the down-
sampled version of sum of absolute difference (SAD). How-
ever, we found that employing MSEA with square patterns
reduces lots of computation and bandwidth cost in hardware
design, especially when the step size matches the sub-block
size.

The computation of 8x8 MSEA is shown in Fig. 6. Each
32x32 block is first divided into 16 8x8 sub-blocks, and each
sub-block is sumed up. Therefore, the 16 absolute differences
of the summed up sub-block pairs are accumulated to derive
the 8x8 MSEA.

B. Markov Random Field Motion Vector Correction

After motion estimation, the rough MVF is formed, but
some MV outliers exist. In this step, the blocks are processed
in raster scan order to refine the MVs based on MRF modeling.
MRF is a theoretical modeling method based on Bayesian’s
framework, applied to computer vision algorithm such as op-
tical flow or true motion estimation [21] for many years [22].
The global energy minimization is a NP-complete problem
so many fast algorithms are proposed [23]. For example, one
of the well-known algorithms called belief propagation [24]
is widely adopted, but the related hardware design costs
extremely high [25].

Among the energy minimization methods, we choose the
simplest ICM with selected candidates. Only nine MVs adja-
cent to the processing block is chosen to be candidates instead
of all 65,536 MVs in the ±128x±128 search range because
there is a very high probability for a block to find its true
motion from nearby blocks’ MVs [26]. As well, choosing only
neighboring nine candidates can prevent over-smoothing, and
the complexity is lower. For a block, eight neighboring MVs
and itself MV are chosen as nine new MV candidates. Thus,
the corresponding MRF energy for each candidate is calculated
as follows,

MSEA8×8+weight×
∑

∀neighbor

|MVcandidate −MVneighbor|

Finally, the one with the smallest MRF energy is selected
from these nine candidates as the new MV of this block as
follows,

New MV = arg min
MVcandidate

Energycandidate

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

Fig. 7. Visualization of MVF after ME and MV correction.

The weight is set as 48 in our design. Besides, running ICM
for three iterations is enough to remove most MV outliers.
Fig. 7 shows the visualization of MVF after ME and MV
correction. The color of visualization presents the direction of
MVs, and the intensity presents the magnitude of MVs [27].
The shape of objects in the frame are roughly formed in the
MVF after ME, and the MV outliers are corrected through
iterations.

C. Block-based Forward Motion Compensation

To avoid temporal mismatch, the forward MV mapping is
operated to project block-based MV from existing frame to in-
termediate frame, as the green block shown in Fig. 8(a). How-
ever, it introduces overlap and hole problems as mentioned
above. Here we divide intermediate frames into intermediate
blocks with 32x32 block size, and then we can calculate how
much one block-based MV contributes to one intermediate
block, as the blue part of the block shown in Fig. 8(a).

In [16], the MV of intermediate block is calculated using
the weighted sum of block-based MVs projected on it, and the
weighting is equal to the overlapped area between intermediate
block and each projected MV. Unfortunately, the MVF of
intermediate frames may be over-smoothed using weighted
sum operation. To prevent over-smoothing, we accumulate
the total overlapped area of each projected MV and find the
MV with the maximum overlapped area. If the maximum
overlapped area is bigger than a half of block size, the
MV with the maximum overlapped area is assigned to the
intermediate block. If not, the MV of corresponding block at
the same position on existing frames is assigned.

After all MVs in the intermediate frame are determined,
the frame will be interpolated using block-based motion
compensation. Thus, the block-based operation is hardware-
friendly, and there are no temporal mismatch, overlap and hole

(a) (b)

Fig. 8. (a) Proposed MV mapping: , (b) Proposed MC: .

Fig. 9. Labeled 16x16 sub-blocks in intermediate frame.

problems.
To achieve multi-rate up-conversion, motion estimation is

performed twice to retrieve forward and backward MVFs
as the green dotted arrows shown in Fig. 8(b). Moreover,
uni-directional interpolation is adopted to prevent blur and
reduce complexity. In other words, the first and the second
intermediate frames are interpolated using the pixel in frame
n-1 with mapped backward MVF. Similarly, the third and the
fourth intermediate frames are interpolated using the pixel in
frame n with mapped forward MVF.

D. Sub-block Division with Artifact Detection

We observe that artifacts always appear in the interpolated
frame when the MVs of neighboring blocks are discontinu-
ous. Therefore, the sub-block division with artifact detection
is operated after motion compensation. First, the boundary
of MV discontinuity is determined using a block matching
criterion. We use bilateral MSEA (bi-MSEA) which calculate
8x8 MSEA of two blocks pointed by forward and backward
MV as matching criterion. Thus, blocks with higher bi-MSEA
values on the boundary of MV discontinuity are detected and
then divided into sub-blocks.

One result of sub-block division with artifact detection is
shown in Fig. 9. Obviously, most of the labeled sub-blocks
are located on the boundary of moving objects since there
exists MV discontinuity.

The number of labeled sub-blocks is calculated for sim-
ulation, and the results in the frame with highest number
of sub-blocks are listed in Table I. There are about 12%
sub-blocks labeled for the following post-processing at most.
Consequently, sub-block division with artifact detection dis-
covers blocks needing to be refined efficiently without much
computational overhead.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

TABLE I
TOTAL NUMBER OF LABELED SUB-BLOCKS IN THE FRAME WITH HIGHEST

NUMBER IN EACH FULL-HD SEQUENCE

Sequences Total number of sub-blocks Percentage
pedestrian area 2,787 8.54%

Titanic-2 1,820 5.58%
Vintagecar 3,074 9.42%

ducks take off 1,340 4.11%
park joy 2,474 7.58%
Tractor 1,969 6.03%

transformer 7-3 3,947 12.09%

Fig. 10. MV refinement: Boundary error computation.

E. Sub-block Refinement with Bilateral Motion Vector Search
and Overlapped Block Motion Compensation

To refine the sub-blocks with artifacts, corrected MVs and
interpolation are required. Therefore, the side match tech-
nique [28] is employed as the matching criterion for bilateral
MV search. For each labeled sub-block, two windows with
range 8x8 around initial MV are searched. One is in the
forward frame and another is in the backward frame using
projection of forward and backward MV. One example is
shown in Fig. 10. We compute the boundary error defined
as the sum of absolute difference between each outside and
inside pixel pairs on the sub-block boundary. Hence, the MV
with the smallest boundary error is assigned to the sub-block.

After refined MVs of all the labeled sub-blocks are esti-
mated, OBMC is performed on these sub-blocks as [7] [29].
This technique blurs the boundary of MV discontinuity and
reduces the blocky artifacts. Fig. 11 shows some regions
of interpolated frames before and after refinement. In brief,
most of the labeled sub-blocks are corrected to be with
better visual quality using proposed sub-block refinement and
OBMC technique.

Fig. 11. Artifact reduction after sub-block refinement and OBMC.

Fig. 12. Full-HD sequences for experiment, from top-left to button-right:
pedestrian area, transformer 7-4, vintagecar, and titanic-2.

Fig. 13. Experimental results of subjective evaluation.

F. Performance Evaluation

Three related works are selected for performance evaluation.
Yang [7] extracts MVF from H.264 decoding information
(using reference software JM 15.1), performing OBME and
OBMC. Wang [9] also extracts MVF from H.264 decoding
information, ignoring MVs that are perceptually unapparent.
Hsu [17] performs global motion estimation and sub-block
refinement.

We choose several HD video sequences including sport
game lives and movies for experiment. Due to the deficiency
of Quad-HD video sequences, we choose Full-HD video
sequences instead. Four Full-HD video sequences shown in
Fig. 12 are used at the following evaluations.

1) Subjective Evaluation: There are thirty-eight people for
subjective evaluation. Besides, twenty-two people are expert
on image and video processing, and the others are not. The up-
converted sequences generated from four different algorithms
are displayed simultaneously. After seeing the sequence twice,
people choose the best one among four sequences. The exper-
imental results are shown in Fig. 13, and we can see that
at least 79% people choose the sequence generated from our
proposed algorithm as the best one.

2) Objective Evaluation: We compute the difference be-
tween original even frames and even frames interpolated by

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

odd frames using FRUC techniques. Peak signal-to-noise ratio
(PSNR) is used in our evaluation. Although PSNR value
can not totally represents perceptual quality, the frame with
higher PSNR value still looks better at most time. Fig. 14
shows the results, and it indicates that our proposed algorithm
outperforms other three algorithm at most frames.

IV. HARDWARE ARCHITECTURE DESIGN

There are three design challenges for the hardware archi-
tecture of the proposed multi-rate FRUC algorithm in Qual-
HD video systems. The first challenge encountered is the
requirement of large on-chip SRAM. For example, to support
±128x±128 search range, the on-chip SRAM arrangement
will be significant. Second, since we interpolate multiple
frames, the required bandwidth for motion estimation and mo-
tion compensation is huge. Third, to achieve 24FPS to 120FPS
and 60FPS to 120FPS multi-rate up-conversion, the cycles
for data fetching must be as less as possible. Consequently,
to utilize the available hardware resource efficiently is very
important.

To the best of our knowledge, there is often a specific
DRAM belongs to the FRUC algorithm without sharing with
other modules to satisfy the huge bandwidth requirement of
it. In the proposed Quad-HD LCD systems, the path between
FRUC and DRAM is assumed that there is fifty cycle latency
with uncertainty. In addition, the clock frequency is assumed
300MHz and the I/O width of system bus is 16 bytes per cycle.

To achieve the target Quad-HD 120Hz video systems, we
choose 4 pieces of 16bit x 1Gb DDR3-1333 DRAM, and each
bank consists of 2 pieces. Pixels in DRAM are arranged as
four successive pixels per address in two banks with raster
scan order, thus it is possible to get 16x1 or 8x2 pixels
at one time. Furthermore, for the selected DDR3 DRAM,
the theoretical maximum bandwidth is equal to 1333MHz x
4pieces x 16bits/8bits = 10,666MB per second. Under the
assumption of 65% probability of DRAM request failure, the
real bandwidth available is 10,666MB x 35% = 3,733.3MB
per second. For the operations on each frame in 24FPS to
120FPS up-conversion, the maximum bandwidth available is
3,733.3MB/24FPS = 15.6MB, and the maximum cycles avail-
able is 300MHz/24FPS = 12.5M cycles. Besides, in 60FPS
to 120FPS up-conversion, the maximum bandwidth available
is 3,733.3MB/60FPS = 62.2MB, and the maximum cycles
available is 300MHz/60FPS = 5M cycles.

Fig. 15 shows the overview of the proposed architecture.
The FRUC control is composed of control units of each
procedure. Write request, read request and read receive are
responsible for communicating with DRAM. For the uncer-
tainty of bus latency, there is job queue for request pushing
and popping. In addition, SRAM of our design is shared by
all of the modules.

The flowchart is shown in Fig. 16 and the procedures of
our proposed FRUC algorithm are performed frame by frame.
Notice that the frames are down-sampled from 3840x2160
to 1920x1080, and all pixel comparisons are operated at the
1920x1080 scale such as 8x8 MSEA, MRF energy, bi-MSEA
and boundary error.

Fig. 15. The overview of the proposed architecture.

Fig. 16. Flowchart of the proposed FRUC algorithm.

A. Architecture of Motion Estimation

First, the on-chip SRAM size will be large in order to
support ±128x±128 search range. Even if scheme C data
reuse is adopted [30], the SRAM size is still (128 + 128 +
32) x (128 + 128 + 32) = 82,944 Bytes. Second, the required
cycles for data fetching are (128 + 128 + 32) x 32 / 16 = 576
cycles per block. Third, the bandwidth consumption is (128 +
128 + 32) x 32 x 2,040 (total number of blocks) = 18.8MB
for one frame in order to fetch data for the next block. All of
the resource requirements above are too much to be feasible.

1) On-chip SRAM Reduction: The resource requirement
can be greatly reduced by employing the characteristics of
the proposed motion estimation algorithm [31]. That is, we
only read the pixels needed for 4, 2, 1-step convergence
and 8x8 sub-block summation values (SUM) for the 8-step
square pattern with a huge amount of bandwidth and SRAM
size reduction. A set of SRAM called M1 with range 8x8 is
prepared to store the possible required pixels when performing
4, 2 and 1-step convergence in the algorithm. On the other
hand, a set of SRAM called O1 is prepared for the 8x8
SUM with scheme C data reuse when performing 8-step re-
estimation from origin with 8x8 MSEA criterions. Therefore,
the bandwidth consumption is reduced to around 7.2MB for
one frame for a worst-case video sequence. Fig. 17 shows the
required size of M1 and O1 memory.

2) Ping-pong Two-way Scheduling: The data and opera-
tion dependencies will introduce pipeline bubbles to lower
the hardware utilization with direct scheduling, as shown
in Fig. 18. Thus, a ping-pong two-way scheduling for de-
pendency elimination is proposed [31], where an additional
SRAM pair of M2 and O2 like original M1 and O1 is

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

Fig. 14. Experimental results of PSNR evaluation.

Fig. 17. SRAM usage for motion estimation.

introduced for data interleaving. The ping-pong means that
one of the pair is used for computing while the other is used
for data pre-fetching. The two-way means one of the pair is
running raster scan and the other is running inverse raster scan,
as shown in Fig. 19(a). Consequently, the pipeline bubbles
are eliminated with ping-pong data pre-fetching, as shown in
Fig. 19(b).

The final synthesized SRAM size is 48 address x 128 bits x
3 banks x 2 = 4,608 Bytes for M1 and M2, and 84 address x
16 bits x 16 banks x 2 = 5,376 Bytes for O1 and O2. That is,
the SRAM size is reduced from 82,944 Bytes to 4,608 + 5,376
= 9,984 Bytes, and the bandwidth is reduced from 18.8MB to
7.2MB for one frame. Also, for the best balance between data
fetching and MSEA computing, the cycles consumed for 4,
2 and 1-step convergence should be about 18 + 144 = 162
cycles.

Fig. 18. Direct scheduling. (a) Raster scan order. (b) Pipeline bubbles.

Fig. 19. Ping-pong two-way scheduling. (a) Two-way scan order. (b) Ping-
pong usage without pipeline bubbles.

B. Architecture of Markov Random Field Motion Vector Cor-
rection

To compute MRF energy for a block, the 8x8 MSEA value
of nine candidates and distance between nine candidate MVs
are needed. The 8x8 MSEA value of each block is written out
to DRAM after motion estimation, but the 8x8 MSEA values
of the other eight candidates may not be the same and need
to be calculated. However, if we fetch pixels candidate-by-
candidate for these 8x8 MSEA computing, it will consume

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

(a) (b)

(c) (d)

Fig. 20. An illustration of our proposed MV grouping algorithm. (a) 8 nodes
with 28 edges. (b) Result of group 1. (c) Result of group 2. (d) Non-grouped
node.

16MB per iteration and 512 cycles per block, which is not
feasible for computing and memory bandwidth.

1) Motion Vector Grouping: As we observed, the neighbor-
ing MVs are similar and many required pixels are overlapped
in the MVF generated by our proposed true motion estimation.
Therefore, if we can group the candidate MVs and fetch all
required pixels for 8x8 MSEA computing simultaneously, it
reduces bandwidth consumption largely compared to fetching
pixels candidate-by-candidate. As a result, a MV grouping
technique using center MV for our proposed SRAM M1(M2)
is proposed. That is, all the MVs with distances to the center
MV smaller or equal to eight (search range of M1 and M2)
can be calculated at the same time. Notice that the group size
must be bigger than two for bandwidth gain, and there are at
most two groups in our design.

An illustration of our proposed MV grouping algorithm is
shown in Fig. 20. The eight candidates are regarded as eight
nodes with twenty-eight edges for all possible connections
between them. For each edge, the corresponding MV distance
which is needed for MRF energy computation is calculated.
Then, the edges with distance smaller or equal to eight are
labeled. The node with maximum number of connected labeled
edges is marked as the center MV of the first group, and
the other connected nodes are regarded as the members of
this group. Hence, the group is removed, and the next group
is generated similarly. In the end, the nodes without being
grouped are marked as non-group.

2) Architecture of Grouping: The proposed hardware archi-
tecture for MV grouping is shown in Fig. 21. At first, the MV
distance is computed one-by-one, and the corresponding edge
registers are labeled if the distance is smaller or equal to eight.
Afterwards, they are accumulated into Total MV dis. Registers
for MRF energy computing. The grouped MVs are pushed into

Fig. 21. Proposed architecture of MV grouping.

three types of queues after performing the proposed grouping
algorithm. Besides, the proposed MV grouping algorithm and
its architecture are also used for distance energy computation
and median filter.

3) Markov Random Field Energy Computing: To compute
MRF energy, we only have to compute 8x8 MSEA of each MV
candidate because the MV distance is already computed during
MV grouping. For the first MRF iteration, the 8x8 MSEA of
each candidate is computed one by one using ping-pong two-
way scheduling. Afterwards, each 8x8 MSEA is written out
to DRAM for further re-use.

Table II shows the grouping results after the first MRF
iteration. Note that the total number of blocks is 2,040,
and the total number of MV candidates is 2,040 x 8 =
16,320. Take sequence “transformer 7-3” for example, the
cycle consumption is (32 + 4) x Grouped + 64 x Non-grouped
= (32 + 4) x (16,320 - 2,338) + 64 x 2,338 = 652,984 cycles,
and then 652,984 / 2,040 = 320 cycles per block. Furthermore,
the bandwidth consumption is 48 x 48 x (Number of Group1
+ Number of Group2) + 32 x 32 x (Number of Non-grouped)
= 48 x 48 x (1931 + 152) + 32 x 32 x 2338 = 4.8 MB + 2.4
MB = 7.2 MB.

At the second and third MRF iterations, nine computed 8x8
MSEA results at the first MRF iteration are loaded for re-
use because the MVF changes little. However, fetching more
pixels to compute 8x8 MSEA is needed for the candidates
whose MV is not equal to one of the nine MV candidates at
the first MRF iteration. In our simulation, the worst case takes
82 cycles and 1.1MB more for the second iteration, and 57
cycles and 0.3MB more for the third iteration.

Consequently, the cycle is reduced from 512 x 3 = 1,536 to
320 + 82 + 57 = 459 cycles per block for three MRF iterations
in the worst case. Also, the bandwidth is reduced from 16MB
x 3 = 48MB to 7.2MB + 1.1MB + 0.3MB = 8.6MB for three
MRF iterations.

C. Architecture of Motion Compensation

In general, motion compensation is operated block by block
on the intermediate frame. Nevertheless, for 24FPS to 120FPS
up-conversion, it consumes bandwidth and cycles extremely
when reading existing frames and writing intermediate frames.
That is, the bandwidth consumption is (3840 x 2160 x 1.5) x

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

TABLE II
GROUPING RESULTS AFTER THE FIRST MRF ITERATION. AVERAGE NUMBER OF BLOCKS IN THE SEQUENCES IS SHOWN IN THE COLUMN ”GROUP1” AND

”GROUP2” WITH THE SIZE OF GROUP, AND AVERAGE NUMBER OF NON-GROUPED MV CANDIDATES IS SHOWN IN THE COLUMN ”NON-GROUP”.

Sequences Group1 Group2 Non-grouped
Size8 Size7 Size6 Size5 Size4 Size3 Size4 Size3 Size1

park joy 1291 113 109 242 135 112 17 160 1912

ducks take off 1771 130 66 35 21 12 1 8 521

vintagecar 998 237 209 274 191 112 20 202 2267

tractor 1314 196 140 198 135 53 32 172 1269

pedestrian area 1328 174 147 151 127 74 13 98 1761

transformer 7-3 1283 132 98 194 108 116 6 146 2338

Titanic-2 945 312 213 286 152 95 13 222 2268

Fig. 22. The same architecture for overlapped region derivation. The left one
is for inverse motion compensation, and the right one is for MV mapping.

(4 + 4) = 99.5MB, and the cycle consumption is 99.5M / 16
= 6.5M cycles.

1) Inverse Motion Compensation Scheduling: To achieve a
reasonable bandwidth and cycle consumption, we proposed an
inverse motion compensation that is operated block by block
on the existing frame instead. As shown in Fig. 22, the existing
frame is used to interpolate its four nearby intermediate
frames.

At first, the pixels in one block of existing frame are read.
After projecting the blocks of intermediate frame using their
MVs to the existing frame, the overlapped regions between
projected blocks and the block of existing frame are derived.
Therefore, the pixels in the overlapped regions are written out
and used to interpolate the intermediate frames. In this case,
only one existing frame is read, and four intermediate frames
are written out, which consumes the resources at the minimum
requirement.

2) Architecture of Inverse Motion Compensation Unit: The
operation of inverse motion compensation is similar to block-
based forward MV mapping but with different overlapped
region derivation, as shown in Fig. 22. Consequently, our
proposed architecture shown in Fig. 23 is able to support
both inverse motion compensation operation and MV mapping
operation. In addition, the SRAM here is also used in our
proposed ping-pong two-way scheduling.

At first, corner coordinates of the overlapped region are
derived. For MV mapping, the corner coordinates are used
to compute area of the region, and then the MV with the
largest accumulated area is assigned to the block of inter-
mediate frame. For inverse motion compensation, the corner
coordinates are used for SRAM address generator and SRAM
rotate unit, and then the required pixels are read.

Fig. 23. Proposed architecture of inverse motion compensation unit.

(a) (b)

Fig. 24. (a) SRAM usage for bi-MSEA computation. (b) Scheduling for
bi-MSEA computation.

D. Architecture of Sub-block Refinement

As mentioned above, bi-MSEA is computed only on some
of the sub-blocks with MV discontinuity. Furthermore, bilat-
eral MV search and OBMC are operated only on sub-blocks
labeled by artifact detection. As a result, queues are created in
DRAM for pushing and popping information of sub-blocks.

1) Bilateral MSEA Computing: To compute bi-MSEA, the
required pixels are fetched into M1 and M2 SRAM in ping-
pong two-way scheduling as shown in Fig. 24. The 8x8 sums
of M1 is used for motion estimation at first, and then it is
calculated with 8x8 sums of M2 for bi-MSEA computation.

2) Bilateral MV Searching and OBMC scheduling: After
all of the above operations, the cycles left for labeled sub-
blocks are shown in Table III by simulation. In the worst
case, there are only 1,064 cycles left for bilateral MV search
nad OBMC on one labeled sub-block. To achieve the target,
the bilateral MV search performs ±8x±8 even point search
instead of full search. The cycle consumption for bilateral MV

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

TABLE III
CYCLES LEFT FOR LABELED SUB-CLOCKS IN THE WORST CASE.

Sequence Cycle Left # of Sub-block For One Sub-block
park joy 4,462,482 2,474 1,804

ducks take off 4,718,998 1,340 3,522

vintagecar 4,258,462 3,074 1,385

tractor 4,641,346 1,969 2,357

pedestrian area 4,410,932 2,787 1,583

transformer 7-3 4,199,558 3,947 1,064

Titanic-2 4,246,090 1,820 2,333

Fig. 25. Total cycle consumption of video converted from 24FPS to 120FPS
and from 60FPS to 120FPS.

search becomes ((8 + 8) / 2 + 1)2 x (64 / 16) x 2 = 648 cycles
per sub-block. Since the least cycle consumption for OBMC
is (32 x 32 x 1.5 x (3 + 1)) / 16 = 384 cycles, 384 + 648 =
1,032 cycles are close to the target.

V. IMPLEMENTATION RESULT

We use Verilog-HDL for hardware implementation, and
synthesize it by SYNOPSIS Design Compiler with UMC
90nm cell library. It works at 300MHz in frequency with
a 128-bit bus. To summarize, it provides 24FPS to 120FPS
and 60FPS to 120FPS multi-rate frame rate up-conversion,
supporting video systems with Quad-HD resolution.

The overall resource saving and characteristics of the pro-
posed architecture are shown in Table IV. Obviously, lots of
cycles, bandwidth and on-chip SRAM are saved using our
proposed hardware design techniques.

A. Cycle and Bandwidth Consumption

We simulate the cycle and bandwidth consumption on seven
different sequences. Fig. 25 shows the simulation results of
cycle consumption. With our proposed scheduling method,
all of the cycles consumption are lower than the available
resource.

Fig. 26 shows the simulation results of bandwidth con-
sumption. All of the bandwidth consumption are lower than
the available resource except the sequence “transformer 7-
3” converted from 60FPS to 120FPS. It is acceptable since
the sequences for simulation are actually at 24FPS. If the
sequences are really at 60FPS, they will take less cycles and
bandwidth because of the smaller MVs between frames.

Fig. 26. Total bandwidth consumption of video converted from 24FPS to
120FPS and from 60FPS to 120FPS.

TABLE V
SPECIFICATION OF IMPLEMENTATION.

Specification
Technology UMC 90nm
Clock rate 300MHz
Bus width 128 bits/cycle

DRAM DDR3-1333
Gate count 537,652
SRAM size single port 9984 Bytes

FRUC mode 24FPS to 120FPS, 60FPS to 120FPS
Frame size 3840x2160

Search range ±128x±128

TABLE VI
COMPARISON OF NORMALIZED SPECIFICATIONS.

Wang Hsu Ours
Technology UMC 90nm UMC 90nm UMC 90nm

Clock rate 200MHz 133MHz 300MHz

Gate count 292,732 1,627,900 537,652

Gate count 212,582 1,301,464 273,845
without SRAM

SRAM size (Byte) 3,036 12,365 9,984

FRUC mode (FPS) 60 to 120 60 to 120 24 to 120
60 to 120

Frame size 1920x1080 1920x1080 3840x2160

B. Chip Design and Specification

coming soon...

C. Hardware Efficiency Evaluation

We also compare the hardware efficiency with two related
works [32]. The specifications are listed in Table VI and the
gate count is normalized regarding all SRAM as single port
with 3.3 gate count per bit. Our proposed design provides
four times resolution and additional 24FPS to 120FPS up-
conversion compared with other two implementations.

VI. CONCLUSION

In this paper, a multi-rate FRUC technique in Quad-HD
LCD system is proposed. After introducing the motion blur

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

TABLE IV
OVERALL RESOURCE SAVING OF THE PROPOSED ARCHITECTURE.

Motion Estimation MRF Iteration x3 Motion Compensation
Direct Proposed Reduction Direct Proposed Reduction Direct Proposed Reduction

Cycles per block 576 266 54% 1,536 459 70% 6.2M (24FPS) 4M (24FPS) 35%

Bandwidth 18.8MB 7.2MB 62% 48MB 8.6MB 82% 99.5MB 64.8MB 35%

SRAM 82,944Bytes 9,984Bytes 88% Shared by all modules

problem on LCD and the general steps of FRUC technique,
an algorithm and architecture implementation for 24FPS to
120FPS and 60FPS to 120FPS up-conversion in Quad-HD
LCD system is proposed.

For the algorithm design, several techniques are proposed
to achieve the target multi-rate FRUC algorithm. At first, we
propose a predictive square search algorithm for true motion
estimation with 32x32 block size, 8x8 MSEA criterion and
±128x±128 search range. The experiments show that more
than 60% blocks converge at their predictor, which indicates
low-complexity and hardware-efficiency. In addition, MRF
model is employed to perform MV correction. The proposed
ICM method reducing energy computation from 65,536 to
9 and preventing over-smoothing is used for energy mini-
mization. Furthermore, we propose a motion compensation
with block-based forward MV mapping combining both the
benefits of forward MV mapping and bilateral MV mapping.
Finally, to enhance the visual quality of interpolated frames,
sub-block division with artifact detection using 8x8 bi-MSEA
criterion and OBMC refinement with bilateral MV Search
using boundary error criterion are proposed.

For the architecture design, lots of hardware architecture
optimizations are proposed to utilize the limited resources
efficiently. For hardware sharing, the SRAM is shared with all
of the modules in our proposed FRUC architecture. Also, the
architecture of grouping is shared with MRF energy computing
and median filter, and the architecture of inverse motion
compensation is shared with MV mapping. With the careful
arrangement of SRAM, there are totally 88% on-chip SRAM
size reduction. Furthermore, our proposed ping-pong two-
way scheduling eliminates the dependencies between blocks
to achieve tight scheduling. There are 54% cycle reduction
and 62% bandwidth reduction in ME, 70% cycle reduction
and 82% bandwidth reduction in MRF MV correction, and
35% cycle reduction and 35% bandwidth reduction in motion
compensation

In the experimental results, the subjective evaluation shows
more than 79% subjects vote the sequences of our proposed
algorithm as the best one. Also, the proposed algorithm has
0.63 to 5.47 PSNR gain compared to other algorithms in the
objective evaluation. The implementation results show that our
design, which consumes about 274k gate count and 10k byte
single port SRAM, is most hardware-efficient compared to
related works. In brief, the proposed algorithm and architecture
consumes reasonable amount of resources but still maintains
well performance.

Some possible future works are listed in the following. Since
it easily introduce artifacts when interpolating between the
frames with different scenes, the scene change detection may

be adopted to increase robustness. On the other hands, for
visual quality enhancement, the perceptual concepts may be
taken into account for operations such as MV refinement and
motion compensation.

REFERENCES

[1] H. Pan, X.-F. Feng, and S. Daly, “Quantitative analysis of LCD motion
blur and performance of existing approaches,” SID Symposium Digest
of Technical Papers, vol. 36, no. 1, pp. 1590–1593, 2005.

[2] ——, “LCD motion blur modeling and analysis,” in IEEE International
Conference on Image Processing (ICIP), vol. 2, Sept. 2005, pp. II –
21–4.

[3] M. Orchard and G. Sullivan, “Overlapped block motion compensation:
an estimation-theoretic approach,” IEEE Trans. Image Process., vol. 3,
no. 5, pp. 693–699, Sept. 1994.

[4] G. de Haan, P. W. A. C. Biezen, H. Huijgen, and O. A. Ojo, “True-
motion estimation with 3-D recursive search block matching,” IEEE
Trans. Circuits Syst. Video Technol., vol. 3, no. 5, pp. 368–379, Oct.
1993.

[5] J.Wang, D. Wang, and W. Zhang, “Temporal compensated motion
estimation with simple block-based prediction,” IEEE Trans. Broadcast.,
vol. 49, no. 3, pp. 241–248, Sept. 2003.

[6] A. M. Tourapis, “Enhanced predictive zonal search for single and
multiple frame motion estimation,” in SPIE Visual Communications and
Image Processing (VCIP), Feb. 2002, pp. 1069–1079.

[7] Y.-T. Yang, Y.-S. Tung, and J.-L. Wu, “Quality enhancement of frame
rate up-converted video by adaptive frame skip and reliable motion
extraction,” IEEE Trans. Circuits Syst. Video Technol., vol. 17, no. 12,
pp. 1700–1713, Dec. 2007.

[8] A.-M. Huang and T. Nguyen, “A multistage motion vector processing
method for motion-compensated frame interpolation,” IEEE Trans. Im-
age Process., vol. 17, no. 5, pp. 694–708, May 2008.

[9] Y.-N. Liu, Y.-T. Wang, and S.-Y. Chien, “Motion blur reduction of liquid
crystal displays using perception-aware motion compensated frame rate
up-conversion,” in IEEE Workshop on Signal Processing Systems (SiPS),
Oct. 2011, pp. 84–89.

[10] J. Astola, P. Haavisto, and Y. Neuvo, “Vector median filters,” Proceed-
ings of the IEEE, vol. 78, no. 4, pp. 678–689, Apr. 1990.

[11] G. Dane and T. Nguyen, “Smooth motion vector resampling for standard
compatible video post-processing,” in Asilomar Conference on Signals,
Systems and Computers, vol. 2, Nov. 2004, pp. 1731–1735.

[12] D. Wang, L. Zhang, and A. Vincent, “Motion-compensated frame rate
up-conversion - part i: Fast multi-frame motion estimation,” IEEE Trans.
Broadcast., vol. 56, no. 2, pp. 133–141, June 2010.

[13] B.-W. Jeon, G.-I. Lee, S.-H. Lee, and R.-H. Park, “Coarse-to-fine frame
interpolation for frame rate up-conversion using pyramid structure,”
IEEE Trans. Consum. Electron., vol. 49, no. 3, pp. 499–508, Aug. 2003.

[14] B.-T. Choi, S.-H. Lee, and S.-J. Ko, “New frame rate up-conversion
using bi-directional motion estimation,” IEEE Trans. Consum. Electron.,
vol. 46, no. 3, pp. 603–609, Aug. 2000.

[15] B.-D. Choi, J.-W. Han, C.-S. Kim, and S.-J. Ko, “Motion-compensated
frame interpolation using bilateral motion estimation and adaptive over-
lapped block motion compensation,” IEEE Trans. Circuits Syst. Video
Technol., vol. 17, no. 4, pp. 407–416, Apr. 2007.

[16] Y. Ling, J. Wang, Y. Liu, and W. Zhang, “A novel spatial and temporal
correlation integrated based motion-compensated interpolation for frame
rate up-conversion,” IEEE Trans. Consum. Electron., vol. 54, no. 2, pp.
863–869, May 2008.

[17] K.-Y. Hsu and S.-Y. Chien, “Frame rate up-conversionwith global-to-
local iterative motion compensated interpolation,” in IEEE International
Conference on Multimedia and Expo (ICME), Apr. 2008, pp. 161–164.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 12

[18] X. Gao, C. Duanmu, and C. Zou, “A multilevel successive elimination
algorithm for block matching motion estimation,” IEEE Trans. Image
Process., vol. 9, no. 3, pp. 501–504, Mar. 2000.

[19] L.-M. Po and W.-C. Ma, “A novel four-step search algorithm for fast
block motion estimation,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 6, no. 3, pp. 313–317, June 1996.

[20] R. Li, B. Zeng, and M. Liou, “A new three-step search algorithm for
block motion estimation,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 4, no. 4, pp. 438–442, Aug. 1994.

[21] K. P. Lim, A. Das, and M. N. Chong, “Estimation of occlusion and
dense motion fields in a bidirectional bayesian framework,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 24, no. 5, pp. 712–718, May 2002.

[22] S. Z. Li, Markov Random Field Modeling in Image Analysis, 3rd ed.
Springer Publishing Company, Incorporated, 2009.

[23] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov,
A. Agarwala, M. Tappen, and C. Rother, “A comparative study of energy
minimization methods for markov random fields with smoothness-based
priors,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 6, pp. 1068–
1080, 2008.

[24] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient belief propagation
for early vision,” Int. J. Comput. Vision, vol. 70, no. 1, pp. 41–54, 2006.

[25] C.-K. Liang, C.-C. Cheng, Y.-C. Lai, L.-G. Chen, and H. H. Chen,
“Hardware-efficient belief propagation,” in Proc. IEEE Conf. Computer
Vision and Pattern Recognition (CVPR), 2009, pp. 80–87.

[26] Y.-L. Huang, Y.-N. Liu, and S.-Y. Chien, “MRF-based true motion
estimation using h.264 decoding information,” in IEEE Workshop on
Signal Processing Systems (SiPS), Oct. 2010, pp. 99–104.

[27] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. Black, and R. Szeliski,
“A database and evaluation methodology for optical flow,” in Proc. 11th
Int. Conf. on Computer Vision (ICCV), Oct. 2007, pp. 1–8.

[28] J. Zhang, J. Arnold, and M. Frater, “A cell-loss concealment technique
for mpeg-2 coded video,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 10, no. 4, pp. 659–665, June 2000.

[29] B.-D. Choi, J.-W. Han, C.-S. Kim, and S.-J. Ko, “Motion-compensated
frame interpolation using bilateral motion estimation and adaptive over-
lapped block motion compensation,” IEEE Trans. Circuits Syst. Video
Technol., vol. 17, no. 4, pp. 407–416, Apr. 2007.

[30] J.-C. Tuan, T.-S. Chang, and C.-W. Jen, “On the data reuse and memory
bandwidth analysis for full-search block-matching vlsi architecture,”
IEEE Trans. Circuits Syst. Video Technol., vol. 12, no. 1, pp. 61–72,
Jan. 2002.

[31] F.-C. Chen, Y.-L. Huang, and S.-Y. Chien, “Hardware-efficient true
motion estimator based on markov random field motion vector correc-
tion,” in International Symposium on VLSI Design, Automation, and Test
(VLSI-DAT), 2012, pp. 1–4.

[32] K.-Y. Hsu and S.-Y. Chien, “Hardware architecture design of frame rate
up-conversion for high definition videos with global motion estimation
and compensation,” in IEEE Workshop on Signal Processing Systems
(SiPS), Oct. 2011, pp. 90–95.

