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Abstract True motion estimation is a well-known technique 
to find the true object motion trajectory in a video, and it has a 
lot of applications in computer vision and display systems. 
However, if the target frame size becomes large, many new 
design challenges are introduced, such as huge computation, 
large bandwidth and large on-chip SRAM size requirements. 
Within the consideration of both algorithm and architecture, we 
develop a true motion estimator with ±128x±128 search range for 
video systems with Full-HD (1920x1080) resolution. The PSNR 
evaluation shows that our algorithm is better than other three 
existing algorithms. For hardware implementation, we use 
Verilog-HDL and synthesize it by SYNOPSIS Design Compiler 
with UMC 90nm cell library. The implementation works at 
300MHz frequency, and it shows that there are total 76% 
bandwidth reduction, 66% cycle reduction and 88% on-chip 
SRAM reduction with the proposed ping-pong two-way 
scheduling and motion vector grouping techniques. 

INTRODUCTION 

Unlike conventional motion estimation designed for video coding, 
the purpose of true motion estimation is to find the real motion 
presenting objects’ movement [1], not just to reduce the residual 
energy of each block. It has a lot of applications in computer vision 
and display systems, and is often a time and area consuming part of 
the system since the number of required candidates of block 
matching is usually large. Recently, many true motion estimation 
algorithms are proposed with decreasing the number of candidates 
[1][2][3]. These algorithms often utilize the characteristics of spatial 
and temporal coherence in motion vector field. 

To make motion vector field more reliable for presenting objects’ 
movement, some motion vector post-processing techniques are 
employed after motion estimation. Since the true motion vector field 
has the characteristics of spatial and temporal coherence, some 
simple operations such as median filter or weighted averaging can 
provide acceptable results. To achieve better quality, the motion 
vector field can be modeled as a 3D Markov Random Field (MRF) 
and formed as an energy minimization problem [4]. Markov Random 
Field is a theoretical modeling method based on Bayesian’s 
framework, applied to computer vision algorithms for many years 
such as optical flow or true motion estimation [4]. The global energy 
minimization is a NP-complete problem so many fast algorithms for 
finding local minimum are proposed [5]. 

While the frame sizes of video systems become large, many new 
design challenges are introduced, such as huge computation, large 
bandwidth and large on-chip SRAM size requirements. In this paper, 
a hardware-efficient true motion estimator is proposed based on 
Markov Random Field motion vector correction. The motion 
estimator is optimized in both algorithm and hardware architecture 
levels to achieve the high specification of Full-HD (1920x1080) 

24fps with 128x±128 in search range. The proposed key techniques 
are shown in the following sections. 

PROPOSED TRUE MOTION ESTIMATION ALGORITHM 
BASED ON MARKOV RANDOM FIELD 

First of all, a low-complexity true motion estimation algorithm is 
proposed. The block size is set as 32x32, and the matching criterion 
is 8x8 multilevel successive elimination algorithm (MSEA) [6] for 
hardware complexity consideration. Moreover, the search range is set 
as ±128x±128 for Full-HD (1920x1080) videos. Furthermore, we 
perform motion vector correction based on Markov Random Field 
modeling with a low-cost but robust version of iterated conditional 
mode (ICM) minimization.  

Predictive Square Search Motion Estimation 

This motion estimation algorithm is very similar to a hybrid 
search algorithm with four step search (4SS) [7] and three step search 
(3SS) [8]. The search pattern is demonstrated in Figure 1(a). At first, 
a predictor is given by the median of three neighboring (left, up and 
upper-right) motion vectors. Then a 4-step square search pattern 
centering on the predictor is employed. If the minimum distortion 
appears at the center or its value is smaller than the threshold, the 
predictor will be regarded as good and proceed to apply 2-step and 1-
step square patterns for converge, like 3SS. Otherwise, we go back to 
the origin and search motion vector like 4SS but with an 8-step 
square pattern. If the minimum distortion found at the center of a 8-
step square pattern, 4-step, 2-step and 1-step square patterns are 
employed for converge. 

The pseudo code of the proposed search algorithm is shown as 
follows. Here SP means square pattern, and � means minimum 
distortion of the applied SP. MV means motion vector value, which is 
used as the center of SP, and the threshold is equal to 1024 in our 
implementation. 

Pseudo Code of the Proposed Search Algorithm 
Step. 1 Set MV = median of three neighboring blocks’ MVs 
Step. 2 Apply 4-step SP on MV 
 if � is found at the center or � < threshold 
 Apply 2-step and 1-step SPs for converge 
 Else 
 Set MV = origin, go to Step. 3 
Step. 3 Apply 8-step SP on MV 
 if � is not found at center 
 Set MV = the position with �, repeat Step. 3 
 Else 
 Apply 4-step, 2-step and 1-step SPs for converge 
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PERFORMANCE EVALUATION 

Several Full-HD (1920x1080) video sequences are used for 
performance evaluation. To evaluate the performance of the 
proposed true motion estimator, we employ the derived motion 
vector for motion compensated frame interpolation (MCFI) to show 
the quality indirectly: with the original odd frames, we compute the 
PSNR values between the interpolated even frames and the original 
even frames which are treated as the ground truth. Three state-of-the-
art algorithms are selected for comparison. Yang [11] derives motion 
vectors from H.264, performing OBME and OBMC; Percept. [12] 
also extracts motion vectors from H.264, ignoring motion vectors 
that are perceptually unapparent; GME [13] performs global motion 
estimation and sub-block division. One of the experimental results 
for sequence “Transformer” is shown in Figure 8. As the result 
shows, our proposed algorithm outperforms other three algorithms. 
Similar results can also be found for other video sequences.

 

FIGURE 8. PSNR EVALUATION OF MCFI. (SEQUENCE: TRANSFORMER) 
 

IMPLEMENTATION 

We use Verilog-HDL for hardware implementation, and 
synthesize it by SYNOPSIS Design Compiler with UMC 90nm cell 
library. It works at 300MHz in frequency with a 128-bit bus. In brief, 
it provides true motion estimation based on Markov Random Field 
motion vector correction with ±128x±128 search range and supports 
video systems with Full-HD (1920x1080) resolution. Table 1 shows 
the overall resource saving and characteristics of the proposed 
architecture. Lots of cycles, bandwidth and on-chip SRAM are saved 
by our proposed hardware design techniques.  
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CONCLUSION 

In this paper, we first propose a predictive square search 
algorithm for true motion estimation with 32x32 block size, 8x8 
MSEA criterions and ±128x±128 search range. Moreover, MRF 

model is employed to perform motion vector correction and 
minimize the energy using low-cost ICM. With the careful 
arrangement of SRAM, proposed ping-pong two-way scheduling, 
motion vector grouping and its architecture, we can reduce totally 
76% bandwidth, 66% cycles and 88% on-chip SRAM size. Also, the 
PSNR evaluation and implementation results indicate that the 
proposed algorithm and architecture consumes reasonable amount of 
resources but still maintains well performance. 
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