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Abstract

Frame rate up-conversion is a technique that up-converts the frame rate of video
sequence by analyzing it and interpolating additional frames. Multi-rate frame rate
up-conversion interpolates two or more frames between two existing frames. This
technique is previously discussed for video compression and applied on LCD to convert
frame rate up to 120Hz or even higher for eliminating the LCD motion blur problem in
recent years

This technique roughly consist of four steps, the first step finds the motion vectors
between two successive frames, the second step then analyzes and optimizes the motion
vectors, the third step interpolates additional frames according to new motion vectors,
and the forth step corrects the region with artifact on interpolated frames. As the
resolution of LCD getting higher and higher, the main challenges of this technique are
the huge demands of computation, bandwidth and on-chip SRAM. Therefore the cost of
it is more expensive than other video processing DSPs.

We develop a multi-rate frame rate up-conversion algorithm and architecture that is
compatible with current LCD system’s standard. The algorithm first performs predictive
square search motion estimation which utilizes the spatial coherence of motion vector
field. This motion estimation algorithm can roughly find the true motion of existing
frames quickly. Then we apply motion vector processing based on Marcov random field
with a very low-cost minimization method to find the true motion of existing frames.
There are three general methods for mapping motion vector to inter-frames but none of
them is perfect. We employ the advantages of each method, proposed a block-based
through motion compensation for interpolating inter-frames. And then we bring up a
simple and precise technique that guarantees to detect the region with artifact. For the
region, we perform sub-block division, find new motion vector with the least artifact in
bilateral directions and interpolate it by overlapped block motion compensation for
better visual quality.

As regards to hardware architecture, since the supporting search range of motion

vector is +128x+128, we provide a special SRAM arrangement that reduces a huge

amount of SRAM size. For eliminating the dependencies of each step causing pipeline
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bubbles, we propose ping-pong two-way scheduling to fill-up the bubbles. For
distortion computation, we devise sub-trees composed of 85 flexible adders. The
sum-trees and SRAM are shared by all modules of architecture. For Marcov random
field motion vector correction, we develop a motion vector grouping algorithm and
architecture for data reuse of similar motion vectors. We also employ the computed
distortion result to further reduce the computation, saving lots of cycles and bandwidth.
For multi-frame interpolation, an inverse motion compensation scheduling is proposed
that reaches the minimum requirement of computation and bandwidth. The architecture
here is also shared by block-based through motion vector mapping. For post-processing
on the sub-blocks, we analyze the parallelism by simulations and reach the demand of
speed without addition area overhead. For exhaustively utilizing the bandwidth, we
bring up special SRAM interleaves such that the data can be read or written in an easy
manner.

As regards the experiments, we select three literatures for algorithm comparison.
The subjective evaluation is that the subjects choose the best one from all frames
interpolated by different algorithms. The objective evaluation is that halves the frame
rate of original video sequence, interpolates new sequences by different algorithms and
generates PSNR to the original video sequence. The results indicate that our algorithm
is better than other three algorithms on both subjective and objective evaluation. We use
Verilog-HDL for hardware implementation and synthesize it by SYNOPSIS Design
Compiler with UMC 90nm cell library. The implementation shows that the total number
of gate count is 274K and on-chip SRAM is single-port 9984 byte. It works at 300MHz
frequency, providing 24Hz to 120Hz and 60Hz to 120Hz multi-rate up-conversion and
supporting 3840x2160 resolution for next LCD generation. For the hardware efficiency,

our architecture is also the best comparing to other previous implementations.
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Chapter 1  Introduction

1.1 Introduction to Frame Rate Up-conversion

Frame rate up-conversion (FRUC) is a technique that up-converts the frame rate of
input video sequence. Like Figure 1.1, it is mainly composed of two parts: finding the
motion vectors presenting objects’ movement and interpolating frames according to
motion vectors between existing frames of input video sequence. The first part is called

motion estimation (ME), and the second part is called motion compensation (MC).

motion vector

P

[]]

frame t+-1

frame +0.5 (interpolated frame)

Figure 1.1 The concept of FRUC.

FRUC is discussed previously for video compression. Imaging if we can drop a
half of frames at the encoder side and reconstruct them at the decoder side by FRUC,
then the size of compressed video can also decrease almost by a half [1]. In this case,
the interpolated frames originally exist, so it is easy for us to know how do them being
interpolated.

For recent years, it is applied on liquid crystal display (LCD) for converting frame
rate of input video stream to 120Hz or even higher. The purpose is to reduce the
hold-type motion blur on LCD which will be introduced in next section [2]. In this case
the converted frame rate is higher than the original and the interpolated frames do not

exist before, so it is hard to know whether the interpolated frames looks good or bad.



1.2  Motion Blur on LCD

Figure 1.2 shows the general structure of LCD. The backlight walks through the first
polarizer, causing the orientation of light to become uniform. Then it passes the liquid
crystal layer controlled by the voltage between two slices of thin film transistor (TFT).
The voltage value influences the rotating angle of light passing the liquid crystal layer.
In the end the light walks through the color filter (red, green and blue) and second
polarizer with different angles. Since the second polarizer will filter the light with

different orientation to it, controlling the voltage means adjusting the intensity of each

TR )

polarizer

color displayed.

TFT
[ [} [e]
It &, & &
voltage [ = i‘;%y; &=
TFT
pularizer A

backlight

Figure 1.2 General LCD structure.

There are two types of motion blur occur on LCD with different solutions [3]. The
first type of motion blur is caused by the slow response of liquid crystal. As in Figure
1.3, the black solid line is the targeting brightness and the dotted line is the actually
displayed brightness. The smooth variation of brightness looks blurred by human eyes.
To overcome this problem, first set the voltage higher (or lower) than the targeting
brightness, and after the brightness becomes close to the target, set the voltage to the
ordinary value. By doing this, the slope of brightness will be sharper like red solid light
in Figure 1.3, which reduce the smooth variation of brightness.

The second type is called hold-type motion blur. As shown in Figure 1.3, the
maintenance of brightness is called the period of hold which is equal to the inverse of
frame rate. In Figure 1.4, when human eyes track objects along their movement with

velocity v, they integrate the intensity continuously, but the real intensity changes

2



discretely. This divergence makes the integrated signal of the object’s boundary on
retina smoothly decrease (increase). The range of decreasing (increasing) is called blur

width and can be directly expressed as

Blur widthgiyec: = V/frame rate (1.2

Another way for evaluating hold-type motion blur is based on the sampling and
reconstruction theory of integrated signal on human’s retina [4]. In the case of idle

display (without slow response), the blur width is equal to

Blur widthpeor, = 0.8 X v/frame rate 1.2)

Therefore, the blur width is inverse- proportional to the frame rate. Among the solutions
of hold-type motion blur, FRUC is regarded as the best method since it can directly
reduce the effect of motion blur without visual quality drop [3].

The period of Hold

A —» fe—

Brightness

n n+l n+2 n+3 t (frame time)

Figure 1.3 Hold-type display with slow response.

N\

object’s\

maovement \
Integrated signal

\on retina
-

N

Figure 1.4 Direct evaluation of blur width.
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The first real-time DSP appeared in ICCE1995 announced by Philips as a
commercial product for motion blur reduction on LCD [5]. Figure 1.5 is its chip photo.
In recent years, the FRUC topic is frequently discussed, but don’t have a generally
accepted conclusion. There is also a lack of academic literature or announcement of

FRUC DSP since the cost is so high that academic institution cannot burden.

Figure 1.5 Chip photo of the first FRUC DSP.

1.3  Design Motivation and Target

As for hold-type motion blur reduction on LCD, we want to design a FRUC algorithm
and architecture which fits with the current LCD system (Figure 1.6). The capability of
the design has 24Hz to 120Hz and 60Hz to 120Hz multi-rate up-conversion, and
supports 3840x2160 (Quad HD, 4Kx2K) resolution for next LCD generation. The
computational cost and area cost must be low with the reasonable bandwidth

consumption.

Figure 1.6 Our design motivation and target.



For the various types of videos, we choose many sequences for experiment
including sport game lives and movies. Due to the deficiency of 4Kx2K sequences, we
use 1920x1080 (Full HD, 1080p) sequences instead. Figure 1.7 shows some of the
1080p sequences.

Figure 1.7 1080p sequences for experiment, from top-left with raster order:
ducks_take off, pedestrian_area, Wimbledon open 2010, transformer2,

vintagecar, titanic.

1.4  Thesis Organization

In this thesis, the detailed steps of up-conversion algorithm is introduced and analyzed
in the first section of next chapter. In next section we introduce proposed FRUC
algorithm based on Marcov random field with precise artifact detection. In each step,
we will tell how to operate and the reasons of proposed algorithm. The third section we
compare the proposed algorithm with three different FRUC methods and show the
results of subjective and objective evaluation. The final section we give a short
conclusion of the proposed algorithm design. Chapter 3 is about architecture of FRUC
on LCD. The first section analyzes the specification of our target, and the second
section shows the overview of our architecture. Section 3 to section 6 describes the
problems encountered of each part and explains how we solve these problems by
proposed architecture. Section 7 shows the implementation results of resource
consumption and hardware specification. In the last chapter we give an overall

conclusion of proposed design, and the possible future works.



Chapter 2 Marcov Random Field Based Algorithm

with Precise Artifact Detection

2.1  Introduction to Up-conversion Algorithm

Figure 2.1 shows a general FRUC flow. First it gets the motion vector field (MVF) of
existing frames from motion estimation or decoder. Then it operate on the MVF to let it
be more reliable, called MV processing. The blocks may be divided into sub-blocks for
presenting more detail motion and reducing block artifact (sub-block division). After
getting new MVF, MV mapping procedure maps MVF of existing frames to
inter-frames. Motion compensation interpolates inter-frames according mapped MVF,
and may apply bilinear, filtering or overlap block motion compensation (OBMC) [6] for
interpolation. After that, post-processing procedure employs initially interpolated
inter-frames’ information to refine the artifact and make the inter-frames have better

visual quality.

motion
vector
field

(MVF)

Figure 2.1 General FRUC flow.

2.1.1 Motion Estimation

Unlike conventional motion estimation for encoder, the purpose of it in FRUC is finding
true motion presenting objects’ movement [7], not just to reduce the residual energy of

each block comparison. It is often a time and area consuming part of the design since
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the number of required candidates of block matching is usually big. Recently researches
suggest that decreasing the number of candidates is helpful to find true motion [7], [8],
[9]. These algorithms often utilize the spatial and temporal coherence of MVF. At first it
is hard to estimation the performance of each algorithm since no ground truth for
comparison. By 2007, Microsoft research team provides a ground truth database
generated by synthesis or capturing motion with photosensitive pigment [10].

It is possible getting MVF from decoder without motion estimation process. Some
of FRUC algorithms use this trick and focus on following operations [11], [12], [13].
We think there are two problems of this trick. The first is that we can’t not sure which
ME algorithm is performed by encoder, and even the condition of intra-block. If the
received MVF is untidy or the number of intra-blocks is too much, the true motion is
hard to find by the following operations. The second is that in current LCD system, it is
unable for DSP to get MVF information from decoder. By the reasons, we determine to
perform ME, not getting MVF from decoder.

2.1.2 MV Processing

The purpose of this operation is to make MVF more reliable for presenting objects’
movement. Since the true motion has spatial and temporal coherence, some simple
operations such as median filter [14] or weighted averaging have just acceptable effect.
Dane, G. and Nguyen, T.Q. [15] provide a motion smooth method by global energy
minimization with a matrix closed form solution. Demin Wang et al. [16] model the
MVF as a 3D Marcov random field and minimize the energy by iterated condition mode.
Many of the algorithms here are heuristic, without a theoretical principle. Some of

algorithms are too complex for hardware implementation.

2.1.3 Sub-block Division

Many FRUC algorithms divide block into sub-blocks to reduce block artifact and get
more detailed MVF after motion estimation [13], [17]. The problem is whether divide
all blocks or only at sub-region. Divide all blocks will make sure all motion vectors are

finer, but with the highest complexity. If only divide sub-region, the efficiency is an
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important concern since only the region with artifact have to be divided. After division,
there should be another process that determines the new motion vector of sub-blocks.

The way of determination directly influences the motion compensation results.
2.1.4 MV Mapping

In general, there are three mapping methods and none is perfect. The first one is called
tradition mapping, which performs ME on existing frame and copy the motion vectors
to the corresponding blocks of inter-frames. The second one is called through mapping,
performing ME on existing frames too but MC through exist MV’s direction. The third
is called bilateral mapping, which performs ME on inter-frame with two reversely

motion vectors [18], [19]. Figure 2.2 is the graphic illustration of the three methods.

| | I ‘ | l
n n-1 n

n-1 n n-1

Figure 2.2 Three general mapping methods: tradition, through and bilateral.

The problem of tradition mapping is time domain mismatch. The corresponding
blocks of inter-frames and existing frames may belong to different object since their
timing is not the same. The motion vectors of these blocks are not totally equal so we
can not directly copy. The through mapping does not have this problem, but the
interpolated frames usually have hold and overlap because the motion vectors passing
through them may not be aligned as shown in Figure 2.3. The hole and overlap require
other technique to handle like in-painting [20], which is often so complex. Non-block
interpolation is also a nightmare for hardware implementation. The bilateral mapping
seems to be the best one without time domain, hold and overlap problem, but by many
researches, it normally fails at flat region and need more special concerns [21]. For
bilateral mapping, the number of ME times is also equal to the number of inter-frames,

which is too costly for multi-rate up-conversion.
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Figure 2.3 Hole and overlap of through mapping.

2.1.5 Motion Compensation

After getting the MVF of inter-frames, motion compensation interpolates the
inter-frames according to MVF. Since the motion compensation is block-based, there
are many ways for block artifact reduction like bilinear, filtering or OBMC. A zero
motion preserving technique called graceful degradation [22] is devised for text
protection in videos. Occlusion handling is proposed in [23] by applying adaptive
weighted-interpolation for pixels only appear in one of the existing frames. These
techniques often applied to whole frame with computation overhead, and may make
inter-frames more blurred than directly interpolation.

The hardware consideration here is seldom discussed since for a regular decoder, it
only compensates one frame each time. For multi-rate up-conversion, up to four or more
frames have to be generated so the bandwidth consumption is very huge (Ex. 120Hz
Quad HD = 1.44GByte / sec). A well-designed architecture is very crucial for
completely utilizing the bandwidth available.

2.1.6 Post-processing

After compensating all inter-frames, this step employs the interpolated frames’
information for finding new motion vectors and re-interpolating on particular region
[17], [23]. There are various ways of this step and we conclude them into three parts:
artifact region detection, motion vector refinement and artifact-reducing interpolation.
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The first part is tough because there are no references of inter-frames for comparative
artifact detection. The second and third part must be based on artifact reduction for

better visual quality of re-interpolated frames.
2.1.7 Summary

In this section, the steps of FRUC are introduced. Motion estimation is a computation
and area costly part, and its target is finding true motion of objects’ movement. Motion
vector from decoder is not reliable and not the current LCD’s FRUC standard. There are
many methods for MV processing, from simple to complex, either heuristic or
theoretical. Dividing all block requires more computation overhead, and dividing
sub-region must be careful of the efficiency. MV mapping has three general types, but
none of them is perfect. Motion compensation is a bandwidth-consuming part for
multi-rate up-conversion seldom discussed in hardware. Some technique may applied
here for block artifact reduction or occlusion handling. Post-processing utilize the

interpolated frames, and take care of region with artifact for better visual quality.

2.2 Proposed Algorithm Based on Marcov Random Field

with Precise Artifact Detection

We describe the proposed algorithm in detail with reasons. The video size in this section
is regarded as 1080p, not 4Kx2K. For motion estimation, we provide a true motion
based search algorithm whose computational complexity is very low. The block size
starts from 32x32, and the matching criterion is 8x8 MSEA for hardware consideration.
We perform MV processing based on Markov random field modeling with a low cost
but robust version of iterated conditional mode (ICM) minimization. We propose a MV
mapping technique that determines inter-frames” MVF by block-based through mapping.
After motion compensation, we divide sub-blocks only on necessary region by precise
artifact detection. In the end for those sub-blocks with artifact, we search new motion
vectors for them and re-interpolate with occlusion consideration. The experiments show
that the proposed algorithm is better than the others by both subjective and objective

evaluation.
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2.2.1 Predictive Square Search Motion Estimation

This motion estimation algorithm is very similar to predictive diamond search, except
we use square pattern (Figure 2.4) instead of diamond pattern. Figure 2.5 shows the
graphic illustration of predictive square search algorithm. First we perform median
filtering on three neighboring motion vectors and getting a predictor. Then we apply
4-step square pattern on the predictor. If the minimum distortion appears at center or its
value is smaller than the threshold, we think the predictor is good and proceed to apply
2-step and 1-step square pattern for converge. Else we back to the origin and search
motion vector like normal diamond with 8-step square pattern. If the minimum

distortion is at the center of 8-step square pattern, then we apply 4-step, 2-step and

@ @
step size
@ ®

@ @ @

1-step for converge.

Figure 2.4 Square pattern with 9 candidates.
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Figure 2.5 Graphic illustration of predictive square search algorithm.
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In the following we show the pseudo code of proposed search algorithm. Here SP
means square pattern and ¢ means minimum distortion of applied SP. MV means
motion vector value as the center of SP and threshold here is equal to 1024 in our

implementation.

1. Set MV = median of three neighboring blocks’ motion vectors
2. Apply 4-step SP on MV
If £ is at center or ¢ < threshold
Apply 2-step & 1-step SP for converge
Else
Set MV = origin, go to step 3
3. Apply 8-step SP on MV
If & is not at center
Set MV = ¢g’s position, repeat step 3
Else
Apply 4-step, 2-step & 1-step SP for converge

The proposed algorithm is very similar to PMVFAST [24] which is frequently used
for true motion estimation [25] exploiting the spatial coherence of MVF. We abandon
temporal coherence since blocks of the same coordinate at different timing may not
belong to the same object, so the temporal prediction is not certainly accurate. Another
reason for proposing this algorithm is the ability of rejecting predictor and re-estimating
from origin. The algorithm is also very cost efficient. Figure 2.6 shows the percentage
of blocks’ converging type in the worst cases of each sequence. For the most complex

sequence (vintagecar), there are near 60% blocks converge around predictor.

100%

80% 1 —

80% | —— —

w0% +—NSail—8 88—

by predictor
20% e
by origin

0%

Figure 2.6 Percentage of blocks’ converge type (the worst cases of each sequence).
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We set block size to be 32x32 in our design (for 1080p) for two reasons. Like
overlapped block motion estimation (OBME [11]), the first reason is aperture problem
since the bigger size for block-matching, the more reliable motion vector generated. The
second is instead of merging smaller block for motion vector unity, dividing the blocks
on necessary region spends less computation overhead [1].

For matching criterion, we choose 8x8 MSEA [26] for block-matching. As shown
in Figure 2.7, it divides 32x32 blocks into 16 8x8 sub-blocks, sums up each sub-block,
then compute 16 absolute differences (Abs.) of each summed up sub-block pair. The

8x8 MSEA is equal to sum of 16 Abs. values as

8x8 MSEA = Z Abs. of sub — block sum pair (2.1)

Vpair

Abs. 5 absolute difference

Abs. 5 absolute difference

E( Abs. = absolute difference )E

Figure 2.7 Illustration of 8x8 MSEA.

8x8 MSEA can be regarded as the down-sample version of sum of absolute
difference (SAD), without down-sampled motion vector value. The original purpose of
this criterion is fast full search, and we found that to co-operate with square pattern it
reduces lots of computation and bandwidth cost in hardware design. The generated
MVF is almost the same if we use SAD as the matching criterion.

By experiments, we notice that there are 24Hz sequences whose maximum motion
vector value reaches 128, so we determine the search range of motion estimation to be

+128x+128 for hardware design.
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2.2.2 Markov Random Field Motion Vector Correction

In this step, we process in raster order to refine the new motion vectors for each block
for three iterations. For a block, we select eight neighboring motion vectors and the
motion vector of itself as nine new motion vector candidates (Figure 2.8). For these nine

candidates, we compute the corresponding Marcov random field energy (MRF energy)

MRF energy qnai. = 8x8 MSEA + weight X z |MV_anai. — MVneign | (2.2)
Vneigh.

From nine these candidates, we select the smallest one as the new motion vector of this
block.

new MV = 9™ MRF energycanai. (2.3)

This process is called iterated conditional mode (ICM) minimization and the
weight is equal to 48 in our design. Unlike the general ICM that selects all candidates in
search range, we only choose nine candidates adjacent to the block. Figure 2.9 shows
the visualization of MVF after ME and MV processing. The color of visualization
presents the direction of motion vectors, and the intensity presents the magnitude of
motion vectors. After ME, the MVF roughly forms the shape of objects in the frame
such as two walking people and the trunk of trees but with some motion vector outliers.
After iteration 1, those outliers are corrected and the MVF looks closer to objects’
movement. The MVF of iteration 2 and iteration 3 looks almost the same, but they do

remove more outliers than previous iterations.

Figure 2.8 Nine candidates of new motion vector.
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Figure 2.9 Visualization of MVF after ME and MV processing.

Marcov random field (MRF) is a very theoretical modeling method based on
Bayesian’s framework, applied to computer vision for many years [27] such as optical
flow or true motion estimation [16], [28]. The global minimization is a NP-complete
problem [29] so many fast algorithms for finding local minimum are proposed [30]. For
a well-known method called belief propagation, the related hardware design requires
633K gate count and 1.88M byte ob-chip SRAM, which is too expensive for us. Thus
we choose the ICM for minimization. By researches, there is a very high probability for
a block to find its true motion from nearby block’s motion vectors [31], thus choosing
neighboring nine candidates is already enough. Another benefit of choosing neighboring
nine candidates is preventing over-smoothing, and the complexity is also lower than

selecting all candidates in search range.
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2.2.3 Block-based Through Motion Compensation

Though mapping has no timing problem, but with hole and overlap. Here we divide
inter-frames into inter blocks (size is also equal to 32x32), and project the motion
vectors to these inter blocks. Each projection of motion vectors may has overlap area
with inter blocks as illustrated in Figure 2.10. In [23], it assigns inter block’s motion
vector to be the weighted sum of motion vectors projected to it, and the weight is equal
to overlap area. In this way, the MFV of inter-frames may be over-smoothing by
weighted sum operation. For preventing over-smoothing, we accumulate the total
overlap area of each motion vector projected to it and find the motion vector with the
maximum overlap area. If the maximum overlap area is bigger than a half of block size
(512 pixels), we set the motion vector of this inter block to be the motion vector with
the maximum overlap area. If not, we set the motion vector of inter block to be the
motion vector of co-located block on existing frames. After determining all inter-blocks’
motion vectors, we perform block-based motion compensation to interpolate
inter-frames. By doing so, we prevent the timing mismatch of tradition mapping and
still perform block-based motion compensation.

MV?2

MV3 I I

z ¢ MVv4

Inter frame

Figure 2.10  Inter block’s overlap area of motion vectors’ projection.
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For multi-rate up-conversion of our target, we perform motion estimation twice to
get forward and backward MVFs (green dotted arrows in). The first and the second
inter-blocks’ motion vectors are mapped by backward MVF, the third and the forth
inter-blocks’ motion vectors are mapped by forward MVF. For preventing blur whole
inter-frame and lower the complexity, we perform uni-directional interpolation that only
gets pixels from one of existing frames. Similarly, the first and the second inter-frames
are interpolated by the pixels in frame n-1, the third and the forth inter-frames are

interpolated by the pixels in frame n.

backward forward
MVF MVF

n-1 n

Figure 2.11  ME and MC of multi-rate up-conversion.

2.2.4 Sub-block Division with Precise Artifact Detection

Typical, the sub-block division performs on existing frames [13], [17]. But since the
artifact does not appears on existing frames, dividing blocks on existing frames may not
directly reduce the block artifact. For this reason, we perform sub-block division on
inter-frames where artifact really appears. With the analysis of the appearance of block
artifact, we found that it always appears when neighboring blocks’ motion vectors are
not continuous. So we simply pay attention to the blocks’ whose motion vector is not
continuous with the others. In this way, it is guaranteed to locate the block artifact on
inter-frames, so the detection method is simple and precise.

If only consider motion vector’s value, although it is precise, two neighboring
blocks will be detect as they share the same motion vector discontinuity boundary. As

shown in Figure 2.12, these blocks’ motion vectors are discontinuous to the other, but
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only the yellow one should be divided into sub-blocks. For preventing this situation, we
must determine which one of these two blocks should be detected. Here we apply a
block matching criterion called bilateral MSEA (bi-MSEA) for the determination. In
Figure 2.13, the two gray solid arrows present the inter-block’s motion vector and its
opposite direction. Bilateral MSEA is 8x8 MSEA of the two blocks (red solid rectangles
in Figure 2.13) pointed by these two motion vectors on existing frame. By and large, the
bi-MSEA value indicates the reliability of inter-block’s motion vector, as well as how
this inter-block being interpolated. Thus this criterion can help us to determine which

one of two blocks should be detected.

object's boundary

=

Figure 2.12  Two blocks sharing he same motion vector discontinuity boundary.

| b|18EAI
n-1 n

Figure 2.13  Graphic illustration of bilateral MSEA.

We devise an artifact detection condition that indicates whether this block has

artifact. The condition is satisfied if

MVxl'”teT- B MVx4—neigh-| >2 or |MVyinter. N MVy4—neigh.| >2 (24)
and
bi — MSEA;ter. > bi — MSEA4 _peign. (2.5)
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where equation(2.4) stands for block artifact detection (4-neighbor) and equation(2.5)
stands for determining one of the two blocks. Figure 2.14 show different detecting
results (yellow and blue region). If only consider equation(2.4), many non-essential
blocks are detected. With the help of equation(2.5), those non-essential blocks are

removed from detection.

equation (2.4)

equation (2.4) & (2.5)

Figure 2.14  Detected 32x32 blocks by different conditions.
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Combining artifact detection and sub-block division, we regard all blocks of
inter-frames as 16x16 sub-blocks and check all the artifact detection conditions of its
four neighbors. Among these four neighbors, only two of them are able to be satisfied
since the other two (gray rectangles in Figure 2.15) lie in the same 32x32 block of the
sub-block with the same motion vector value. If at least one of the conditions is satisfied,
we label this sub-block (dark blue rectangle in Figure 2.15) for post-processing and
assign an initial motion vector (dark blue arrow in Figure 2.15) to it. If the bi-MSEA
value of this labeled sub-block is smaller than 512, we set the initial motion vector equal
to the original motion vector of it, else the initial motion vector equal to the weighted
sum of neighboring motion vectors whose condition is satisfied (pink arrow in Figure
2.15). Since the post-processing only operate on labeled sub-blocks, we do not actually

divide all blocks into sub-blocks.

Figure 2.15  Sub-block division with precise artifact detection.

The purpose of initial motion vector assignment is to give labeled sub-block a
predictor for searching new motion vector. With the predictor, we don’t have to
re-estimate the new motion vector in large search window. Since true motion often
comes from nearby block, the predictor is equal to the weighted sum of neighboring
motion vectors if the bi-MSEA value of labeled sub-block is bigger than them. Figure
2.16 shows the effect of initial motion vector assignment. The result of sub-block
division with artifact detection is shown in Figure 2.17. It is apparent that the most of
labeled sub-blocks lie on moving objects’ boundary since there is motion vector
discontinuity. The non-labeled region is guaranteed to have no artifact as in the figure.
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Figure 2.16  The effect of initial motion vector assignment.
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Figure 2.17  Labeled 16x16 sub-blocks on inter-frame.

Table 2.1 Total # of labeled sub-blocks in the worst cases of each sequence.

sequences total # of sub-blocks percentage
pedestrian_area 2787 8.54%
Titanic-2 1820 5.58%
Vintagecar 3074 9.42%
ducks_take off 1340 4.11%
park_joy 2474 7.58%
Tractor 1969 6.03%
transformer 7-3 3947 12.09%
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We count the number of labeled sub-blocks and list the results of the worst cases in
Table 2.1. For the most complex sequence (transformer 7-3), there are only about 12%

sub-blocks with block artifact labeled for the following post-processing.

2.2.5 Sub-block Refinement with Bilateral Motion Vector Search and

Overlapped Block Motion Compensation

The last step is post-processing which consist of three parts: artifact region detection,
motion vector refinement and artifact-reducing interpolation. Since we divide the
sub-blocks only on artifact region, we don’t have to perform artifact region detection in
this step.

For motion vector refinement, we want to find the motion vector with the least
block artifact. Similar to [23], we employ side match technique [32] as our matching
criterion for motion vector refinement. For a labeled sub-block, around its initial motion

vector and the opposite direction we open two search windows with range +8x+8 as in

Figure 2.18. The search window of opposite direction stands for occlusion handling.
There are outside pixels around labeled sub-block’s boundary (dark blue hollow
rectangles in Figure 2.19) on inter-frames. Go along with the motion vector in search
windows, there are inside pixels around corresponding sub-block’s boundary (dark
green hollow rectangles in Figure 2.19) on existing frames. The boundary error is
defined as the sum of absolute different of each outside and inside pixel pairs as shown
in right graph of Figure 2.19. Among all motion vectors in search windows, we choose
the one with the least BE. as the new motion vector of labeled sub-block. After finding
new motion vector of labeled sub-block, we temporarily interpolate the inside boundary

pixels of this sub-block for next labeled sub-block’s boundary error computing.

+8x+8
Initial MV search
. window
+8x48 opposite
search direction
window
n-1 n

Figure 2.18  Search window for motion vector refinement.
22



Abs.

MV in the
windows Abs.

inter-frame existing frame Aps.

" Abs. = absolute difference
*BE. = boundary error = ¥ Abs.

Figure 2.19  Boundary error computation.

After finding new motion vectors of all the labeled sub-blocks, we perform OBMC
on these sub-blocks like [11], [19]. First we get five motion vectors from the original,
up, right, down, left neighboring sub-blocks (Figure 2.20). Then we apply each motion
vector to this sub-block to get pixels from existing frames, multiply them by the
weighting map show in Figure 2.21. The original motion vector is applied to whole
sub-block with diamond-shape weighting map. The up neighboring motion vector is
applied to top-half of the sub-block with descending weighting map and other
neighboring motion vectors work as well. After multiplying all weighting map, we sum
up those weighted pixels and divide them by 16 to generate normalized weighted sum

pixels of interpolated sub-block.

Figure 2.20  Five different motion vectors for OBMC.
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Figure 2.21  Weighting map of each motion vector for OBMC.

Since the weighting map of neighboring motion vectors are descending from
outside and the origin weighting map is descending from inside, the pixel values are
partially continuous to each side. This technique only blurs the boundary with motion
vector discontinuity, thus further reduces the block artifact only on necessary region.
Figure 2.22 shows the sub-region of inter-frames before and after post-processing.
Many labeled sub-blocks are corrected with less block artifact by proposed motion

vector refinement and OBMC technique.
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before post-processing after post-processing

Figure 2.22  Artifact reduction after post-processing.
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2.3 Performance Evaluation

We select three papers for performance evaluation. Yang’s algorithm [11] extracts MVF
from JM reference software 15.1, performs OBME and OBMC; Percept’s algorithm [12]
also extracts MVF from JM, and ignores motion vectors that are perceptually
unapparent; GME’s algorithm [17] performs global motion estimation and sub-block

division.

2.3.1 Subjective Evaluation

There are thirty eight subjects for subjective evaluation. Twenty two of them come from
National Taiwan University electronic engineering students. Other sixteen come from
internet. The experimental method is letting them watch twice up-converted 1080p
sequences (Figure 2.23) of 4 algorithms frame by frame at the same time. In the end
each subject votes the best one among four algorithms of all the sequences. Figure 2.24
shows the final experiment results. At least 79% of subjects choose our algorithm as the

best one among all sequences.

UK AR

=Y ) s

Figure 2.23  Four 1080p 24Hz sequences for evaluation:

pedestrian_area, transformer 7-4, Titanic-2, vintagecar.
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Figure 2.24  Experiment results of subjective evaluation.
2.3.2 Objective Evaluation

By twice up-converting the odd frames of original sequences, we compute the PSNR
values of interpolated frames to even frames of the original as ground truth (Figure
2.25). The PSNR values frame by frame are showed in also with average and PSNR
gain. Figure 2.26 shows the results of each sequence. It indicates that the PSNR values
of our algorithm are the best in the most of frames. The averaging value is also the best
with 0.63 to 5.47 PSNR gain.

compute PSNR

PP
oiiginal 24Hzsequence [ |1 N 1N N 1 N

Figure 2.25 PSNR comparison for objective evaluation.
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34
32
30 /\v_\/
- 28 e Yang
E 26 = Percept.
TS~ —GME
24 ——
ours
22
20
1 2 3 4 5 6 7 8 9 10 11 12 13 14
Yang Percept. GME ours
avg. 26.41 25.72 27.07 28.39
PSNR gain 1.97 2.67 1.32 0.00
transformer 7-4
34
32
30
. 28 e Yang
5 M = Percept.
& 26
e GME
24
ours
22
20
1 2 3 4 5 6 7 8 9 10 11 12 13 14
Yang Percept. GME ours
avg. 25.79 26.94 25.82 21.57
PSNR gain 1.78 0.63 1.75 0.00

28




Titanic-2
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Figure 2.26  PSNR values of each sequence for objective evaluation.

29




2.4 Summary of Algorithm Design

In this chapter, we introduce the steps of FRUC algorithm and describe the proposed
algorithm in detail with reasons.

For motion estimation, we propose a predictive square search based on true motion
estimation. Experiment shows that at least 60% of blocks converge at predictor with
only 25 distortion computation. The block size is equal to 32x32 and the matching
criterion is 8x8 MSEA for complexity concern, and the search range is determined to be
+128x+128.

We use Marcov random field modeling for motion vector processing, which is also
based on true motion estimation. Among the minimization method, we choose the
simplest ICM with selected candidates. Research shows that using nine candidates is
already enough with the benefit of preventing over smoothing and low computation
cost.

Although none of three general motion vector mapping methods is perfect, we
perform a block-based through motion compensation which has no timing mismatch
and interpolates inter-frames block by block.

We introduce a precise detecting technique for locating the block artifact on
inter-frames. With the help of bi-MSEA, we only label necessary sub-blocks for
post-processing and assign them an initial motion vector. Experiment shows that there
are at most 12% of sub-blocks have to be labeled.

In post-processing, we adopt the boundary error criterion to find the new motion
vector of labeled sub-block with the least block artifact. We open a search window in
opposite direction for occlusion consideration. In the end the OBMC technique is
applied to further reduce the block artifact.

By the results of performance evaluation, the proposed algorithm is better than the

other algorithms both in subjective and objective evaluation.
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Chapter 3  Architecture Design of Multi-rate Frame

Rate Up-conversion on LCD

In this chapter, we first analyze the specification of our design target, including DRAM
selection and compute the resource available. Since the proposed algorithm consists of
variety of steps, the hardware and on-chip SRAM reusing becomes an important topic.
In the algorithm, there are many dependencies between blocks causing data pre-fetching
and pipeline bubble reduction to be tough. And since we interpolate multi-frames, how
to efficiently utilize the available bandwidth is also a significant matter. After
specification analysis, we give an overview of the architecture. The procedures of
proposed FRUC algorithm are performed one by one, frame by frame. And then we
explain proposed hardware architecture of each part for resolving the architecture
design problems in detail. Later we show the cycles and bandwidth consumption by
simulations, and the final hardware specification with efficiency comparison. In the end

we give a summary of proposed architecture design.

3.1 Specification Analysis

3.1.1 Introduction

Figure 3.1 is the general LCD system. Beside the modules for 1/0 and display, there are
many DSPs for video processing connected by a system bus. The ARM CPU handles
the AMBA protocol to let them share the DDR SRAM (DRAM). Since FRUC DSP
consuming larger bandwidth than the others, it often has its own DRAM without sharing
by the others for up-conversion. The path between FRUC and DRAM is showed in
Figure 3.2 and we assume there is fifty cycle latency with uncertainty. The clock
frequency is assumed 300M Hz and the I/O width of system bus is 16 bytes per cycle.
Pixels in DRAM are arranged as four successive pixels per address in two banks, raster

scan order (Figure 3.3), thus it is possible to get 16x1 or 8x2 pixels at a time.
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Figure 3.2 The path between FRUC and DRAM.
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Figure 3.3 Pixel arrangement in DRAM.

3.1.2 DRAM Selection

With the reference to NXP 5100 FRUC solution [34], it generates 1080p 120Hz video
sequence with 2pcs 16bit x 512Mb DDR2-667 DRAM. Since our target is 4Kx2K
120Hz video sequence which is four times of NXP 5100, we choose 4pcs 16bit x 1Gb
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DDR3- 1333 (MT41J64M16JT-15E in [35]), each bank with 2pcs as our DRAM for
FRUC whose data rate and storage are four times than NXP 5100. By the spot price of
[36] we found that the price gap between DDR2 and DDR3 becomes smaller, so we
think for next generation of LCD DDR3 will replace DDR2 as the DRAM on the

system.

3.1.3 Resource Available

For the selected DDR3 DRAM, the declared maximum is equal to 1333M Hz x 4pcs x
16bits / 8bits = 10666MB per second. But since there is a huge DRAM random access
penalty, we assume 65% probability of request failure. The real bandwidth available is
10666MB x (100% - 65%) = 3733.3 MB per second. For 24Hz to 120Hz up-conversion,
there is 3733.3MB / 24fps = 155.6MB for all the FRUC operations, and for 60Hz to
120Hz up-conversion, there is 3733.3Mb / 60fps = 62.2MB. The maximum cycles
available for 24Hz to 120Hz is 300M Hz / 24 fps = 12.5M cycles, and for 60Hz to
120Hz is 5.0M cycles.

3.1.4 Summary

By the above analysis, we found that the resource is critical. Bandwidth is the most
important issue since FRUC performs motion estimation like encoder and motion
compensation like decoder, which are the most consuming parts of them, not to mention
multi-frame up-conversion. The available bandwidth only support reading or writing up
to 13.0 frames for 24Hz and 5.2 frames for 60Hz. The cycles available are also tight if
we do not handle data pre-fetching and pipeline bubble reduction problems well. The
dependencies between blocks of each operation make this task to be harder. For the
variety of each step in the algorithm, how to employ hardware re-use is important for
decreasing area overhead. The on-chip SRAM arrangement is also significant for

supporting +128x+128 search range and shared by all of the modules. As for limited

resource, all pixel comparisons operate at 1080p’s scale, such as 8x8 MSEA, MRF
energy, bi-MSEA and boundary error.
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3.2 Architecture Overview

Figure 3.4 shows the overview of proposed architecture. The FRUC control is
composed of controls of each procedure. For post-processing we fetch job queue
beforehand to tighten the schedule, so its control consists of two parts for data
requesting control and data computation control. The Write request module handles the
task of writing pixels or motion vector information to DRAM. Read request is in charge
of requesting data from DRAM, and Read receive delivers the received data to each
module. For the uncertainty of bus latency, there is a Job queue for request pushing and
popping. SRAM of out design is shared by all of the modules and Write SRAM unit
provide address generators for writing pixels into SRAM with interleaves of different
procedures. The pixels read from SRAM are mostly sent to Sum-trees and
Accumulators for distortion computation. These two modules are the main computation
unit with small area cost. Predictor control and Origin control stand for generating
address to SRAM for ME control and MRF control. MV grouping unit computes the
motion vector discontinuity for motion estimation and motion vector processing and

IMC unit manages the block-based through motion compensation.
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Figure 3.4 The overview of proposed architecture.
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The flowchart is showed in Figure 3.5 and each procedure is done frame by frame.
Down-sample cuts down the frame scale from 4Kx2K to 1080p for pixel comparison.
8x8 sum computes the sum-up of 8x8 sub-blocks of 1080p frames every eight pixels for
8x8 MSEA computing of re-estimation step in motion estimation. ME performs
predictive square search motion estimation and MRF refines MVF for three iterations.
MV mapping maps motion vectors to inter-blocks, and MC performs uni-directional
motion compensation according to mapped MVF. Bi-MSEA computing computes the
bi-MSEA value of all the sub-blocks that are possible to be labeled. MV search finds
new motion vectors of labeled sub-blocks in two search windows then OBMC performs
overlap block motion compensation of these sub-blocks.

—N] MRF
e — %3 :>

Bi-MSEA
computing

Figure 3.5 Flowchart of each procedure.

3.3  Motion Estimation Architecture

3.3.1 On-chip SRAM Issue

The first challenge encountered is on-chip SRAM issue. For supporting +128x+128

search range, if scheme C data re-use is adopted, the SRAM size is (128 + 128 + 32)"2
= 82944 byte. For fetching data to next block, the bandwidth consumption is 2MB x
(128 + 128 + 32) / 32 = 18MB per motion estimation. The cycles for fetching are (128 +
128 + 32) x 32/ 16 = 576 cycles per block. All of the resource depleted above is too
much for the limited resource available.

By employing the characteristics of proposed motion estimation algorithm, we can
greatly reduce the depleted resource mentioned above. For 4, 2 and 1-step convergence
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in the algorithm, we prepare a set of SRAM call M1 with range +8x+8 for saving all the
possible required pixels (M1 in Figure 3.6). Although setting the range of M1 to be +7x
+7 is already enough for motion estimation, we set the size to be +8x+8 for sharing by

other modules. For 8-step re-estimation from origin with 8x8 MSEA criterion, we can
directly apply scheme C on 8x8 sum generated before with much less resource
consumption (O1 in Figure 3.6). The bandwidth depleted here is reduced to (2304 x
60% + 2304 x 2 x 40% + 36 X 4 x 2) x 2040(total # of blocks) = 7.2MB per motion

estimation.

SUM [SUMISUM |SUM [SUM [SUM

Save all 8x8sum in search range

Save all pixels in convergence’srange SUM |SUM [SUM [SUM |SUM [SUM

Searchrange
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SUM [SUMISUM [SUm [Sum [sum =2592Byte

Figure 3.6 SRAM usage for motion estimation.

3.3.2 Ping-pong Two-way Scheduling

There are dependencies between blocks for motion estimation. One block must waits
until the motion vector of previous block is determined for applying median filter. If we
directly implement the scheduling, there will be lots of pipeline bubbles as shown in
Figure 3.7. For eliminating the dependencies, we append an additional SRAM pair of
M2 and O2 like original M1 and O1. Two pairs operate according to the proposed
ping-pong two-way scheduling. The ping-pong means one of the pair is computing
while the other is pre-fetching data, as two players hit ping-pong ball in turns. The
two-way means one of the pair is raster scan and the other is inverse raster scan. By
doing so, the pipeline bubbles are eliminated with ping-pong data pre-fetching (Figure
3.8). For the best balance between data fetching and MSEA computing, the cycles
consumed for 4, 2 and 1-step convergence should be near 18 + 144 = 162 cycles which

is explained in next sub-section.
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Figure 3.8 Ping-pong two-way scheduling.

(a) two-way scan order. (b) ping-pong usage without pipeline bubbles.

3.3.3 Flexible Adders

The 8x8 sums of blocks on current frame are already generated after down-sampling
step, so we have to generate 8x8 sums of nine candidates of square pattern for 8x8
MSEA computing on reference frame. First we read one line of pixels in M1 (M2). As
shown in Figure 3.9, this pixel line is composed of four 8x1 lines of 8x8 sub-blocks of 9
candidates for 8x8 MSEA computing. As the result, we send this pixel line into
sum-tress with flexible adders to generate 8x1 sums of 8x8 sub-blocks simultaneously.
Figure 3.10 showed the different arrangements of flexible adders for 4, 2 and 1-step.

Black adders (with four hollow black line at the top) generate four 8x1 sums for 3

37



candidates at left side. Green adders are for 3 candidates in the middle and blur adders
are for 3 candidates at the right side. Figure 3.11 shows that different 8x1 sums belong
to different 8x8 sub-blocks of 9 candidates. The number of adders required is 49 for

sum-trees.

Figure 3.9 One line of pixels in M1 consist of four 8x1 lines of 9 candidates.

[

Figure 3.10  Sum-trees with flexible adders for generating 8x1 sum of 9 candidates.
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Figure 3.11  8x1sums generated by sum-trees for 9 candidates.

After generating all the 8x1 sums of all the candidates, we use accumulators to
sum-up 8x1 sums for 16 8x8 sums of each candidate in parallel. Since one candidate
receive four 8x1 sums at a time, we needs 9x4 = 36 adders for accumulation (Figure
3.12). The total bits of shift registers are 14bit x 16 x 9 = 2016 bits. After all of the 8x8
sums are accumulated, we send them to a 16-to-1 SAD tree candidate by candidate for
8x8 MSEA computing. The SAD tree is a part of sum-trees with 16 ABS units for
outputting sum or absolute difference (Figure 3.13). After 9 cycles for sending all the
8x8 sums and 4 cycle latency, all the 8x8 MSEA of 9 candidates are generated. For
4-step square pattern, it needs 40 cycles to read all lines in M1 (M2). For 2 and 1-step it
needs 36 and 34 cycles. Thus for 4, 2 and 1-step convergence, it takes (40 + 9 + 4) + (36
+ 9+ 4)+ (34 +9 + 4) = 149 cycles, which are near the targeting cycles for data
fetching balance. For re-estimation from origin, we directly send the existing 8x8 sums
from O1 (O2) of 16 banks to SAD tree. The cycles required for 8-step is (5 + 4) or (3 +
4) = 9 or 7 cycles since each 8-step needs to compute additional 5 or 3 candidates. So
for the worst of sequences, it needs 149 x 60% + (149 + 128 / 8 x 9 + 149) x 40% = 266
cycles per block. The sum-trees proposed here are also used for down-sample, 8x8 sum

on whole frame, MRF energy, bi-MSEA and boundary error computing.
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Figure 3.13  SAD tree with ABS unit. (a) SAD tree. (b) ABS unit.

3.3.4 Summary

In this section we propose a ping-pong two-way scheduling for eliminating the
dependencies of blocks and pipeline bubbles. We only read the pixels needed for 4, 2,
1-step convergence and 8x8 sum for 8-step, with a huge amount of bandwidth and
SRAM size reduction. The sum-trees of flexible adders and accumulators only consume
49 + 36 = 85 adders and balanced with data fetching. The number of cycles for
computing a block is reduced from 576 to 266 cycles. The throughput of 4, 2, 1-step
convergence is 149 cycles / 25 candidates ~= 6 cycles per candidate. With the same
throughput by SAD criterion and 2D SAD trees, it needs (32x32x2) / 6 ~= 341 adders
and more SRAM banks. The final synthesized SRAM size is 48 address x 128 bits x 3
banks x 2 = 4608 bytes for M1 and M2, and 84 address x 16 bits x 16 banks x 2 = 5376

bytes for O1 and O2. The SRAM size reduction is from 82944 bytes to 4608 + 5376 =
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9984 bytes, and the bandwidth reduction is from 18MB to 7.2MB per motion estimation.
By the way, sum-trees, accumulators and SRAM proposed in the section are all shared

by other modules.

3.4 Markov Random Field Correction Architecture

3.4.1 Motion Vector Grouping Algorithm

After motion estimation, the 8x8 MSEA value of block itself will be written out to
DRAM for MRF energy computing. But there are still neighboring 8 candidates with
unknown 8x8 MSEA value. The motion vectors of these 8 candidates may not be the
same. If we fetch pixels candidates by candidates for 8x8 MSEA computing, it will
consume 2MB x 8 = 16MB per iteration and 64 x 8 = 512 cycles per block. The
resource depleted is also too much by this directly implementation.

By employing the characteristics of MVF generated by our motion estimation
algorithm, neighboring motion vectors are similar with many pixels required are
overlapped. As shown in Figure 3.14, if we can determine the center motion vector of a
group, by fetching all pixels around this center motion vector into M1 (M2), all the
motion vectors whose discontinuity with center motion vector is smaller or equal to 8
(search range of M1 and M2) are able to get the pixels in M1 (M2). Thus we have to
perform grouping algorithm to 8 candidates for bandwidth reduction. The group size

must be bigger than 2 for bandwidth gain, so there are at most 2 groups.

M1 or M2 overlapped pixels in M1 or M2

Search range
+8x 18

different motion vectors

Figure 3.14  Overlapped pixels of different motion vectors in M1 or M2.
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As shows in Figure 3.15, we regard 8 candidates as 8 nodes with 28 edges
presenting motion vector discontinuity of nodes it connect. The discontinuities
generation consumes no computation overhead since they are a part of MRF energy.
The edges with discontinuity smaller or equal to 8 are labeled as dark blue is the figure,
and we count the total number of labeled edges connecting to the nodes. The node with
maximum number is the center motion vector of group, and the nodes with labeled
edges connecting to center motion vector are the members of this group (blue nodes in
the figure). After generating group 1, we must remove the nodes and edge of this group

and generate group 2. The nodes that are not grouped called non-group.

o 2@ 3
(a)

(b)

2

9, E

(c) (d)

edges are labeled if discontinuity <= 8

Figure 3.15  Motion vector grouping algorithm. (a) 8 nodes with 28 edges. (b) result
of group 1. (c) result of group 2. (d) non-group node.
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3.4.2 Grouping Architecture

Figure 3.16 show the proposed grouping architecture. We generate motion vector
discontinuities one by one, and accumulate them into Total MV dis. registers for MRF
energy computing. In the meanwhile, we judge whether the discontinuities are smaller
or equal to 8, and label the corresponding edge registers. After the generation of all the
discontinuities, we perform proposed grouping algorithm by Logic control, push the
center and member motion vectors into three types of queue. The architecture is also

used for median filter computing for motion estimation

— P ABS. MV_x
= - Y
Mv Nz +
registers ﬁ/E
—1 ABS. MV y A
B i -\ ToalMV )
@ @ S| dis. registers [
N
edge I Group 1 queue |
control registers | |
Group 2 queue
* | Non-group queue |

Figure 3.16  Proposed grouping architecture.

3.4.3 MRF energy computing

The discontinuity energy is already computed during grouping, so we only have to
compute 8x8 MSEA value of each candidate. Table 3.1 shows the grouping results of
MREF iteration 1. As we can see, there are many blocks with group 1 size 8 or size 7, and
the total number of non-group candidates is at most 2338, 14% of total candidates. For
MREF iteration 1, the 8x8 MSEA is computed by sum-trees and accumulators according
to the three types of queue one by one. The scheduling is also ping-pong two-way like

motion estimation, since there are dependencies between blocks. After getting 9
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candidates’ 8x8 MSEA values, we write them out to DRAM for further re-use. Take
transformer 7-3 in Table 3.1 as the worst case, the cycles for a block = (32 + 4) x (16320
- 2338) + 64 x (2338) / 2040 = 320 cycles per block. And the bandwidth = 48 x 48 x (#
of group 1 + # of group 2) + 32 x 32 x (# of non-group) =4.8 MB + 2.4 MB = 7.2 MB
for MRF iteration 1.

Table 3.1 Grouping results of MRF iteration 1.

Average# of blocks Average# of candidates

(total 2040) (total 2040 x 8 = 16320)
Group1l Group1l Group1 Groupl Groupl Groupl Group2 Group2 non-
size8 size? sizeb size5 sized size3 sized size3 group
park_joy 1291 113 109 242 135 112 17 180 1912
ducks_take_off| 1771 130 66 35 21 12 1 8 521
vintagecar 998 237 209 274 191 112 20 202 2267
tractor 1314 1986 140 198 135 53 32 172 1269
pedestrian_area 1328 174 147 151 127 74 13 98 1761
transformer 7-3 1283 132 98 194 108 116 6 1486 2338
Titanic-2 945 312 213 286 152 95 13 222 2268

As in Figure 2.9, the MVF changes a little after MRF iteration 2 and iteration 3.
Thus for these two iteration, we load previous iteration’s 9 computed 8x8 MSEA results.
If the candidates whose motion vector is equal to one of the 9 computed results, we can
directly use this result without 8x8 MSEA computing. For the candidates whose motion
vector is not equal to all the 9 computed results, we fetch the pixels needed for 8x8
MSEA computing. By simulations, in these two iterations the worst case is Titanic-2.
The cycles per block and bandwidth are 82 cycles and 1.1MB for iteration 2, 57 cycles
and 0.3MB for iteration 3.

3.4.4 Summary

In this section, we propose a motion vector grouping algorithm and corresponding
architecture also used for discontinuity energy generation and median filter. For 8x8
MSEA computing, we reuse sum-trees and accumulators previously proposed for
motion estimation. We also employ the computed results to further reduce the resource
consumption. The cycle reduction is from 512 x 3 = 1536 to 320 + 82 + 57 = 450 cycles
per block for 3 MRF iterations. The bandwidth reduction is from 16MB x 3 = 48MB to
7.2+ 1.1+ 0.3 = 8.6MB for 3 MRF iterations. The SRAM and address generators for
8x8 MSEA computing are also shared with motion estimation.
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3.5 Motion Compensation Architecture

3.5.1 Inverse Motion Compensation Scheduling

For tradition motion compensation, it processes block by block on inter-frames, read the
required pixels of the block and write out to DRAM with proper address. For 60Hz to
120Hz up-conversion there is no problem in this way since it consumes the minimum
requirement for motion compensation. But for 24Hz to 120Hz up-conversion, it needs to
read pixels of four frames and write out fours inter-frames. The bandwidth = (3840 x
2160 x 1.5) x (4 + 4) = 99.5MB, and the cycles = 99.5M / 16 = 6.5M cycles. The
consumption is too large since there should be a way that exhaustively utilizes the pixels
read and consumes the minimum requirement for multi-frame up-conversion.

For reaching the minimum requirement, we process block by block on middle
existing frame, interpolate the inter-frames near to it (blue frames in Figure 3.17). First
we read on block’s pixels of existing frame (red rectangle in Figure 3.17). Then for all
the possible inter-blocks that may use these pixels, we derive the overlapped region
along their motion vectors, and write out pixels in the overlapped region (Figure 3.18).
By doing this, the resource consumed is the minimum requirement since we read only
one frame and write out four frames. It is called inverse motion compensation since it

operates from the view of existing frame, not from the view of inter-frames.

n-2 n-1 n

Figure 3.17 Interpolated frames of inverse MC scheduling.
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v

existing block’s pixels

Figure 3.18  Illustration of overlapped region.

The procedure of deriving the overlapped region is similar to block-based through
motion vector mapping. The only difference is that for inverse motion compensation it
derive overlapped region from inter-blocks to existing block, while block-based through
motion vector mapping derive overlapped region from existing blocks to inter-block
(Figure 3.19). Thus we propose inverse motion compensation architecture which is

responsible for both motion vector mapping and inverse motion compensation.

n-2 n-1 n n-2 n-1 n

(a) (b)
Figure 3.19  Overlapped region derivation. (a) for inverse MC. (b) for MV mapping.

3.5.2 Inverse Motion Compensation unit

Figure 3.20 shows the proposed architecture for block-based through motion vector

mapping and inverse motion compensation. For motion vector mapping, the first part is
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deriving overlapped region’s corner coordinates. Then we compute the width and length
of overlapped region, multiply them to generate area of the region. At last we
accumulate the area of each motion vector, select one with the biggest area as the
inter-block’s motion vector. For inverse motion compensation, the corner coordinates
are sent to SRAM address generator and SRAM rotate unit, generating 8x2 pixels per
cycles in the overlapped region for motion compensation. The SRAM here are also used
in ping-pong manner, and we process Y value first then process U and V value for

interpolation.

overlappedregion’s
width, length & area

x2/5
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X1 0,64,128 -64
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L WG W My NG W overtsgpedres
) - o 3 PP

My L mapping accumulation
registers  f— /|& ) accumulate
' MV_y unit
L% NG B MO D i
-128,-64, 64
0,64,128
( SRAM address generator
S ipeline
== pipeline .
8x2 pixels
overlapped region’s SEAM mmmm) generation
corner coordinates for MC
e pipeline
C SRAM rotate unit

L

Figure 3.20  Proposed inverse MC unit.

3.5.3 On-chip SRAM interleave for Motion Compensation

For writing out 8x2 pixels per cycle, we need to random access 8x2 pixels arranged in
SRAM of existing block at a time. We save the Y value of existing 64x64 blocks with
additional 8 pixel columns at the right side of the block for overlapped region striding
across the right boundary of the existing block (thus we save 72x64 pixels for Y value
and 40x32 for U and V value). The odd lines of pixels are saved in M1 (M2) and the
even lines of pixels are saved in O1 (02). So we have to random access 8x1 pixels in
M1 and O1 (M2 and O2) at a time. Figure 3.21 shows the SRAM interleaves. Different

colors mean different banks, and the numbers present the corresponding addresses.
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Figure 3.21  Pixel interleaves for random access. (a) interleave of M1 and M2.
(b) interleave of O1 and O2.

3.5.4 Summary

For reaching the minimum requirement of multi-frame up-conversion, we propose an
inverse motion compensation technique. The derivation of overlapped region is similar
to block-based through motion vector mapping, thus we propose an architecture that is
responsible for these two procedures. The bandwidth reduction is from 99.5MB to (72 x
64 + 40 x 32 x 2 + 64 x 64 x 1.5 x 4) x 2040 = 64.8MB. The cycle reduction is from
6.2M cycles to 64.8M/16 = 4.0M cycles. Both of them are very close to the minimum
requirement. The SRAM is also shared, operating in ping-pong usage with pixel

interleaves.

3.6  Post-processing architecture

Since bi-MSEA computing operates only on partial sub-blocks with motion vector
discontinuity, and bilateral motion vector search and overlapped block motion
compensation operates only on labeled sub-blocks, we create queues in DRAM for
pushing and popping sub-blocks’ information for operating. The queue of bi-MSEA
computing is pushed during inverse motion compensation since there are inter-blocks’
motion vectors at the moment. The queue of labeled sub-blocks is pushed right after the
bi-MSEA computing.
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3.6.1 BI-MSEA computing

The computation of bi-MSEA also shares the sum-trees and accumulators proposed for
motion estimation. At the beginning we pop sub-block’s information from queue. And
then we fetch pixels of two directions into M1 and M2 (Figure 3.22 (a)) in ping-pong
manner. We generate 8x8 sums of M1 first and save them into block registers of current
frame used for motion estimation. After that we generate 8x8 sums of M2 then the 8x8
sums and block registers’ value (M1’s 8x8 sums) to SAD tree for bi-MSEA computing.
For pipeline bubble reduction, we pre-pop next queue’s information for data
pre-fetching of next sub-block (Figure 3.22 (b)).

pop next MI M2 pop next Ml
queue 64 cycles 64 cycles queue 64 cycles

M2 Data request | | | |
M1 bilMSEA Data receive | | |

B ]

n-1 n 8x8 sum 8x8 sum & bi-MSEA
computation computation

(a) (b)

latency

Figure 3.22  Bi-MSEA computing. (a) SRAM usage. (b) scheduling.

3.6.2 Parallelism determination

Since bilateral motion vector search performs like full search with lot of computation,
we have to determine the parallelism of this procedure. After all of the above operations,
the cycles left for labeled sub-blocks are show in Table 3.2 by simulations. In the worst
case, there are 1064 cycles left for bilateral motion vector search and overlapped block
motion compensation on one labeled sub-block. In the end we decide the throughput of
bilateral search to be 16 absolute differences per cycle. And the search range changes
from £8x+8 to even point in £8x+8. By this parallelism, the number of cycle consumed
for bilateral search = ((8 + 8) / 2 + 1)"2 x (64 / 16) x 2 = 648 cycles per sub-block.
Since the least cycles for overlapped block motion compensation are 32 x 32 x 1.5 x (3
+ 1) /16 = 384 cycles, 384 + 648 = 1032 cycles which is close to our target. By the way,

we can reach the throughput by the existing SAD tree, without additional hardware cost.
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Table 3.2 Cycles left for labeled sub-blocks.

(all of the worst | cycleleft cycleleft # of sub-block o(rzlicéeulbe—ftsl?gk
cases) (60Hz) (24Hz) (24 Hz) (24 Hz)

park_joy| 1126796 4462482 2474 1804
ducks_take offf 1219792 4718998 1340 3522
vintagecar] 1049260 4258462 3074 1385
tractor] 1191664 4641346 1969 2357
pedestrian_area| 1115964 4410934 2787 1583
transformer 7-3] 1048000 4199558 3047 1064
Titanic-2| 1039672 4246090 1820 2333

3.6.3 On-chip SRAM interleave for Bilateral Motion Vector Search

We save boundary pixels in SRAM for boundary error computing. The horizontal pixel
lines are saved in M1 (M2) and vertical pixel lines are saved in O1 (02). Figure 3.23
illustrate the specified pixel interleaves for boundary pixel windows of original motion
vector direction (the opposite direction is in similar manner). By the interleaves, we can
save 8x2 pixels into SRAM of different banks (red hollow rectangles in Figure 3.23)
and access any line of boundary (yellow hollow rectangles in Figure 3.23) in a cycle.
The data pre-fetching of SRAM is also in ping-pong manner.
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(a)

Figure 3.23  The pixel interleaves for boundary error computing. (a) horizontal lines

in M1 and M2. (b) vertical lines in O1 and O2.
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3.6.4 On-chip SRAM interleave for Overlapped Block Motion

Compensation

For this operation, we save pixels of center weighting map in M1 (M2) and of other four
weighting map in O1 (02). When performing compensation, we read 16x1 pixel lines
(blue hollow rectangles in Figure 3.24) of weighting maps at a time; multiply them by
corresponding weight, and fuse multiplied 16x1 pixels lines then write out. The 16x1
weights of center, up and down map change by time, so we need multipliers for them.
The 16x1 weights of left and right map are constant, so we just use constant multipliers

for them. The data pre-fetching of SRAM is also in ping-pong manner.

Address Address
0~31 32~63

Address
0~31

@)
bank

caonstant multipliers

multipliers

multipliers

Figure 3.24  Illustration of OBMC.

3.6.5 Summary

For post-processing, we create queues in DRAM for pushing and popping sub-blocks’
information. By parallelism analysis, we can cope with at least 4069 sub-blocks and
1015 sub-blocks for 24Hz to 120Hz and 60Hz to 120Hz up-conversion without
additional hardware cost for computation. With the specified pixel interleaves in SRAM,
we only read and write the required pixels for minimum amount of bandwidth

consumption. The schedules are tight by SRAM ping-pong usage and next queue
pre-popping.
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3.7 Implementation Results

3.7.1 Cycles and Bandwidth Consumption

Figure 3.25 shows the simulation results of cycle consumption. All of the sequences’
consumptions are lower the resource available (since we apply parallelism analysis). For
24Hz to 120Hz up-conversion, the cycles are depleted mainly by MC and MV search.
For 60Hz to 120Hz up-conversion, the cycles are depleted mainly by MC and MRFx3.

24 Hz cycles 60 Hz cycles
14000000 12.5M 6000000
cycles 5.0M
cycles
12000000 5000000 v
10000000 +—~ — —+— — —F —p— OBMC OBMC
4000000 +~ — —w— — — —— —
MV search MV search
8000000 1= — — — — — —| — FbiMSEA bi-MSEA
MG 3000000 +~ — — — — — — — .
I B B B EE D map_MV map_MV
5 \RF3 2000000 - ——— B "wre2
R I E NS HMRF2 H \VRF2
P e mER R Bm
MRF1 4
v - E Y s EEEE L o
BEERRRERR ™= =M
0 N N N N N vexesum 0 N N N N N "adsum
(ﬁ & 4 & /\5‘3 .QQ, & down-sample o’$ & & & ,\ib ‘c,ﬂ’ & down-sample
& & @ & & & & & e s &S
& FF g & & ¥ F g & o
- \45’ 60 Ry Q ‘5,/ go°
s & & &
@’ s 2> &
& &
(a) (b)

Figure 3.25  Total cycles. (a) 24Hz to 120Hz. (b) 60Hz to 120 Hz.

Figure 3.26 shows the simulation results of bandwidth consumption. All of the
sequences’ consumptions are lower the resource available except 60Hz to 120Hz
up-conversion of transformer 7-3. It is acceptable since all the sequences for simulation
are 24Hz with stronger motions than 60Hz, which take more resource for many
operations. If the sequences are really 60Hz, it will take less bandwidth (and cycles) for
60Hz to 120Hz up-conversion than our simulation results. Near a half of bandwidth is
depleted by MC where OBMC consumes the second amount of bandwidth for 24Hz to

120Hz and down-sample consumes the second amount for 60Hz to 120Hz
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Figure 3.26  Total bandwidth. (a) 24Hz to 120Hz. (b) 60Hz to 120 Hz.

3.7.2 Hardware Specification and Efficiency

Table 3.3 shows the final implementation results. We use Verilog-HDL for hardware
implementation, synthesize it by SYNOPSIS Design Compiler with UMC 90nm cell
library. The total number of gate count is 274K, on-chip SRAM is single-port 9984 byte,
working at 300MHz frequency on 128 bits bus. It provides 24Hz to 120Hz and 60Hz to

120Hz multi-rate up-conversion with +128x+128 search range and supports 3840x2160

resolution for next LCD generation. The differences between proposed algorithm and

architecture are two-way scan order and +8x+8 on even points for motion vector

refinement
Table 3.3 Specification of implementation.
Technology UMC 90nm FRUC mode 24 Hz -> 120 Hz
Clock rate 300MHz . 60 Hz -> 120 Hz
Bus width 128 bits/cycle Frame size 3840x2160
DRAM DDR3-1333 Search range +128 x £128

Gate count with SRAM 537652
Gate count without SRAM 273845

SRAM size 9984 Bytes
single port
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For hardware efficiency evaluation, we also compare to Percept. [12] and GME
[17]. The specifications are listed in Table 3.4 and we normalize the gate count by
regard all SRAM as single port with 3.3 gate count per bit. We provide four times of
resolution and additional 24Hz to 120Hz up-conversion mode to other two
implementations. The hardware efficiency comparison is shown in Figure 3.27. As the
slope of our design is the smallest, the proposed architecture has the best hardware

efficiency of all.

Table 3.4 Normalized specifications of the references.

Technology UMC 90nm UMC 90nm UMC 90nm
Clock rate 200MHz 133MHz 300MHz
*Assume single port SRAM  Gatecount  292732° 1627900" 537652
with 3.3 gate count / bit with SRAM
Gate count 212582 1301464 273845
without
SRAM
SRAM size 3036~ 12365" 9984
(Byte)
FRUC 60Hz -> 120Hz 60Hz -> 120Hz 24Hz -> 120Hz
mode B80Hz -> 120Hz
Frame size 1920x1080 1920x1080 3840x2160

Spec.v.s gate count

2000000 7
4 GME
1500000 +
g i -
S 1000000 =
E Fl
© J L
[=)] / »
/ Percept. - PR
500000 g —= - s
/ o - Ours
0 ““080p 3840x2160
spec
Figure 3.27  Hardware efficiency comparison.
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3.8  Summary of Architecture Design

In this chapter, the system of LCD, specification of our design target, DRAM selection
and resource available are introduced at first. By analysis, there are many issues for
architecture design to be concerned.

We propose a ping-pong two-way scheduling for motion estimation to eliminate
the dependencies of blocks and pipeline bubbles. By only reading the pixels needed for
4, 2, 1-step convergence and 8x8 sum for 8-step, we reduce a huge amount of
bandwidth and SRAM size. The sum-trees of flexible adders and accumulators consume
small amount of adders and shared by other modules.

For Marcov random field correction, a motion vector grouping algorithm is
proposed for bandwidth and cycles reduction. The corresponding architecture is also
used for discontinuity energy generation and median filter. For MRF iteration 1 and
iteration 2, we employ the computed results to further reduce the resource consumption.
The SRAM and computation unit are shared here with motion estimation.

Multi-frame motion compensation is seldom discussed in hardware. For reaching
the minimum resource requirement, we propose an inverse motion compensation
scheduling. The proposed architecture is also responsible for block-based through
motion vector mapping. For writing 8x2 pixels at a time, we provide a pixel interleaves
on SRAM.

We create queues in DRAM saving sub-blocks’ information for post-processing.
By parallelism analysis, we can deal with the worst case of sub-blocks without
additional hardware cost for computation. There are specified pixel interleaves of
bilateral motion vector search and overlapped block motion compensation for minimum
amount of bandwidth consumption.

The simulation results show that the cycles and bandwidth consumed are under the
upper bound of resource available. The final implementation results indicate that our
design only consumes 274K gate count and 10K byte single port SRAM and supports
24Hz to 120Hz and 60Hz to 120Hz up-conversion for 4Kx2K resolution. Comparison to

other design, the proposed architecture has the best hardware efficiency.
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Table 3.5 shows the overall resource saving and characteristics of proposed

architecture. Lots of cycles and bandwidth are saved by our hardware design of each

part. With the help of ping-pong two-way scheduling, all of the schedules are tight.

Sum-trees and accumulators are shared by ME and MRF (also shared by down-sample,

8x8 sum, bi-MSEA and boundary error). MC shares the architecture with MV mapping,

and Post-processing consumes no additional area overhead by parallelism analysis. The

SRAM is also shared by all of the modules, with different pixel arrangements for
applications.
Table 3.5 Overall resource saving and characteristics of the architecture.
ME MRFx3
Direct Proposed Direct proposed Direct proposed
576 cycles 266 cycles 1536 cycles 459 cycles 6.2M cycles 4.0Mcycles 4069 sub-block 1015 sub-blocks
/block /block /block /block -24Hz -24Hz -24Hz -60Hz
Cycles
all of the schedules are tight
Area sum-trees & accumulators are shared shared with MV mapping parallelism analysis
Bandwidthy 18MB 7.2MB 48MB 8.6MB 99.5MB 64.8MB Only read & write the required data
Shared by all modules
SRAM Pixel arrangement
82944 Byte 9984 Byte
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Chapter 4 Conclusion and Future Work

In this thesis, we introduce the motion blur problem on LCD, and the general steps of
frame rate up-conversion technique. For our design motivation and target, we develop
an algorithm and architecture implementation for 24Hz to 120Hz and 60Hz to 120Hz
up-conversion with resolution 3840x2160.

For the FRUC algorithm design, we propose a true motion based predictive square
search algorithm for motion estimation with 32x32 block size, 8x8 MSEA criterion and

+128x+128 search range. The experiments show that there are at least 60% blocks

converge at predictor, thus the algorithm is very low-cost. For motion vector processing,
we apply Marcov random field modeling and minimize the energy by low-cost ICM.
The low-cost ICM is true motion based, reducing energy computation from 65536 to 9
and preventing over-smoothing. The general types of MV mapping are not perfect, so
we use block-based through motion compensation better than the three general types. A
precise artifact detection technique is provided with only 12% of sub-blocks labeled. In
post-processing, bilateral search considers occlusion, boundary error criterion finds
motion vectors with the least block artifact, and OBMC blur the necessary region with
block artifact.

For the proposed architecture, ping-pong two-way scheduling eliminates the
dependencies of blocks for data pre-fetching. The pipeline bubbles are therefore
dissolved. The careful arrangement of SRAM reduces the size from 90K byte to 10K
byte. The sum-trees with flexible adder and accumulators consume only 85 adders and
shared by lot of modules. MV grouping for MRF correction reduces cycles from 1536
to 459 cycles per block and bandwidth from 48MB to 8.6MB for three iterations. Its
architecture is shared for MRF energy computing and median filter. The inverse-MC
scheduling requires near minimum amount of resource, reduces cycles from 6.2M to
4.0M cycles and bandwidth from 99.5MB to 64.8MB. The architecture is also shared by
MV mapping. In post-processing, parallelism analysis is performed for minimum cost
of bilateral search. There are specified pixel interleave for boundary error computing
and OBMC.

By subjective evaluation, above 79% subjects vote proposed algorithm as the best

choice. By objective evaluation, there is 0.63 to 5.47 PSNR gain to other algorithms.
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Simulation results indicate that the proposed architecture consumes reasonable amount
of cycles and bandwidth. The final implementation results show that our design only
consumes 274K gate count and 10K byte single port SRAM. By supporting 24Hz to
120Hz and 60Hz to 120Hz up-conversion for 4Kx2K resolution, our implementation

has the best hardware efficiency comparing to previous works.

For the possible future works, we list in the following:

® There may be a criterion for scene change detection, for example: threshold of
MRF energy. The scene change detection is important since we don’t want to
interpolate frames between two non- successive frames.

® The block size can be smaller by repeating similar operation of proposed sub-block
division on labeled sub-blocks.

® Taking the perceptual criterion into account for motion vector refinement in
post-processing may be a good way for enhancing the visual quality.

® Among all the FRUC discussions, the FRUC algorithms are operating step by step.
There is no modeling-based FRUC framework. If we can model the inter-frames
well, then finding the motions, occlusion labels and pixels value of inter-frames
such that the modeling energy is minimized is equal to interpolate the inter-frames.
The modeling-based FRUC is more theoretical and can be pixel-based, and surely

have more complexity.
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